This file is indexed.

/usr/include/trilinos/ROL_Vector.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_VECTOR_H
#define ROL_VECTOR_H

#include "ROL_Elementwise_Function.hpp"

#include "Teuchos_RefCountPtr.hpp"
#include "Teuchos_oblackholestream.hpp"

/** @ingroup la_group
    \class ROL::Vector
    \brief Defines the linear algebra or vector space interface.

    The basic linear algebra interface, to be implemented by the user, includes:\n
    \li #plus -- vector addition;
    \li #scale -- scalar multiplication;
    \li #dot -- dot (scalar) product of vectors;
    \li #norm -- vector norm;
    \li #clone -- cloning of existing vectors.

    The dot product can represent an inner product (in Hilbert space) or
    a duality pairing (in general Banach space).

    There are additional virtual member functions that can be
    overloaded for computational efficiency. 
*/

namespace ROL {

template <class Real>
class Vector {
public:

  virtual ~Vector() {}


  /** \brief Compute \f$y \leftarrow y + x\f$, where \f$y = \mathtt{*this}\f$.

             @param[in]      x  is the vector to be added to \f$\mathtt{*this}\f$.

             On return \f$\mathtt{*this} = \mathtt{*this} + x\f$.

             ---
  */
  virtual void plus( const Vector &x ) = 0;


  /** \brief Compute \f$y \leftarrow \alpha y\f$ where \f$y = \mathtt{*this}\f$.

             @param[in]      alpha is the scaling of \f$\mathtt{*this}\f$.

             On return \f$\mathtt{*this} = \alpha (\mathtt{*this}) \f$.

             ---
  */
  virtual void scale( const Real alpha ) = 0;


  /** \brief Compute \f$ \langle y,x \rangle \f$ where \f$y = \mathtt{*this}\f$.

             @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
             @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

             ---
  */
  virtual Real dot( const Vector &x ) const = 0;


  /** \brief Returns \f$ \| y \| \f$ where \f$y = \mathtt{*this}\f$.

             @return         A nonnegative number equal to the norm of \f$\mathtt{*this}\f$.

             ---
  */
  virtual Real norm() const = 0;


  /** \brief Clone to make a new (uninitialized) vector.

             @return         A reference-counted pointer to the cloned vector.

             Provides the means of allocating temporary memory in ROL.

             ---             
  */
  virtual Teuchos::RCP<Vector> clone() const = 0;


  /** \brief Compute \f$y \leftarrow \alpha x + y\f$ where \f$y = \mathtt{*this}\f$.

             @param[in]      alpha is the scaling of @b x.
             @param[in]      x     is a vector.

             On return \f$\mathtt{*this} = \mathtt{*this} + \alpha x \f$.
             Uses #clone, #set, #scale and #plus for the computation.
             Please overload if a more efficient implementation is needed.

             ---
  */
  virtual void axpy( const Real alpha, const Vector &x ) {
    Teuchos::RCP<Vector> ax = x.clone();
    ax->set(x);
    ax->scale(alpha);
    this->plus(*ax);
  }

  /** \brief Set to zero vector.

             Uses #scale by zero for the computation.
             Please overload if a more efficient implementation is needed.

             ---
  */
  virtual void zero() {
    this->scale( (Real)0 );
  }


  /** \brief Return i-th basis vector.

             @param[in] i is the index of the basis function.
             @return A reference-counted pointer to the basis vector with index @b i.

             Overloading the basis is only required if the default gradient implementation
             is used, which computes a finite-difference approximation.

             ---
  */
  virtual Teuchos::RCP<Vector> basis( const int i ) const {return Teuchos::null;}


  /** \brief Return dimension of the vector space.

             @return The dimension of the vector space, i.e., the total number of basis vectors.

             Overload if the basis is overloaded.

             ---
  */
  virtual int dimension() const {return 0;}


  /** \brief Set \f$y \leftarrow x\f$ where \f$y = \mathtt{*this}\f$.

             @param[in]      x     is a vector.

             On return \f$\mathtt{*this} = x\f$.
             Uses #zero and #plus methods for the computation.
             Please overload if a more efficient implementation is needed.

             ---
  */
  virtual void set( const Vector &x ) {
    this->zero();
    this->plus(x);
  }


  /** \brief Return dual representation of \f$\mathtt{*this}\f$, for example,
             the result of applying a Riesz map, or change of basis, or
             change of memory layout.

             @return         A const reference to dual representation.

             By default, returns the current object.
             Please overload if you need a dual representation.

             ---
  */
  virtual const Vector & dual() const {
    return *this;
  }

  virtual void applyUnary( const Elementwise::UnaryFunction<Real> &f ) {
    TEUCHOS_TEST_FOR_EXCEPTION( true, std::logic_error,
      "The method applyUnary is called but not implemented" << std::endl); 
  }

  virtual void applyBinary( const Elementwise::BinaryFunction<Real> &f, const Vector &x ) {
    TEUCHOS_TEST_FOR_EXCEPTION( true, std::logic_error,
      "The method applyBinary is called but not implemented" << std::endl); 
  }

  virtual Real reduce( const Elementwise::ReductionOp<Real> &r ) const {
    TEUCHOS_TEST_FOR_EXCEPTION( true, std::logic_error,
      "The method reduce is called but not implemented" << std::endl); 
  }

  /** \brief Verify vector-space methods.

             @param[in]      x     is a vector.
             @param[in]      y     is a vector.

             Returns a vector of Reals, all of which should be close to zero.
             They represent consistency errors in the vector space properties,
             as follows:

             - Commutativity of addition: \f$\mathtt{*this} + x = x + \mathtt{*this}\f$.
             - Associativity of addition: \f$\mathtt{*this} + (x + y) = (\mathtt{*this} + x) + y\f$.
             - Identity element of addition: \f$0 + x = x\f$.
             - Inverse elements of addition: \f$\mathtt{*this} + (- \mathtt{*this}) = 0\f$.
             - Identity element of scalar multiplication: \f$ 1 \cdot \mathtt{*this} = \mathtt{*this} \f$.
             - Consistency of scalar multiplication with field multiplication: \f$a (b \cdot \mathtt{*this}) = (a b) \cdot \mathtt{*this}\f$.
             - Distributivity of scalar multiplication with respect to field addition: \f$(a+b) \cdot \mathtt{*this} = a \cdot \mathtt{*this} + b \cdot \mathtt{*this}\f$.
             - Distributivity of scalar multiplication with respect to vector addition: \f$a \cdot (\mathtt{*this} + x) = a \cdot \mathtt{*this} + a \cdot x\f$.
             - Commutativity of dot (inner) product over the field of reals: \f$(\mathtt{*this}, x)  = (x, \mathtt{*this})\f$.
             - Additivity of dot (inner) product: \f$(\mathtt{*this}, x+y)  = (\mathtt{*this}, x) + (\mathtt{*this}, y)\f$.
             - Consistency of scalar multiplication and norm: \f$\|{\mathtt{*this}} / {\|\mathtt{*this}\|} \| = 1\f$.
             - Reflexivity: \f$\mbox{dual}(\mbox{dual}(\mathtt{*this})) = \mathtt{*this}\f$ .

             The consistency errors are defined as the norms or absolute values of the differences between the left-hand
             side and the right-hand side terms in the above equalities.

             ---
  */
  virtual std::vector<Real> checkVector( const Vector<Real> &x,
                                         const Vector<Real> &y,
                                         const bool printToStream = true,
                                         std::ostream & outStream = std::cout ) const {
    Real zero =  0.0;
    Real one  =  1.0;
    Real a    =  1.234;
    Real b    = -432.1;
    int width =  94;
    std::vector<Real> vCheck;

    Teuchos::oblackholestream bhs; // outputs nothing

    Teuchos::RCP<std::ostream> pStream;
    if (printToStream) {
      pStream = Teuchos::rcp(&outStream, false);
    } else {
      pStream = Teuchos::rcp(&bhs, false);
    }

    // Save the format state of the original pStream.
    Teuchos::oblackholestream oldFormatState, headerFormatState;
    oldFormatState.copyfmt(*pStream);

    Teuchos::RCP<Vector> v    = this->clone();
    Teuchos::RCP<Vector> vtmp = this->clone();
    Teuchos::RCP<Vector> xtmp = x.clone();
    Teuchos::RCP<Vector> ytmp = y.clone();

    //*pStream << "\n************ Begin verification of linear algebra.\n\n";
    *pStream << "\n" << std::setw(width) << std::left << std::setfill('*') << "********** Begin verification of linear algebra. " << "\n\n";
    headerFormatState.copyfmt(*pStream);

    // Commutativity of addition.
    v->set(*this); xtmp->set(x); ytmp->set(y);
    v->plus(x); xtmp->plus(*this); v->axpy(-one, *xtmp); vCheck.push_back(v->norm());
    *pStream << std::scientific << std::setprecision(12) << std::setfill('>');
    *pStream << std::setw(width) << std::left << "Commutativity of addition. Consistency error: " << " " << vCheck.back() << "\n";

    // Associativity of addition.
    v->set(*this); xtmp->set(x); ytmp->set(y);
    ytmp->plus(x); v->plus(*ytmp); xtmp->plus(*this); xtmp->plus(y); v->axpy(-one, *xtmp); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Associativity of addition. Consistency error: " << " " << vCheck.back() << "\n";

    // Identity element of addition.
    v->set(*this); xtmp->set(x); ytmp->set(y);
    v->zero(); v->plus(x); v->axpy(-one, x); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Identity element of addition. Consistency error: " << " " << vCheck.back() << "\n";

    // Inverse elements of addition.
    v->set(*this); xtmp->set(x); ytmp->set(y);
    v->scale(-one); v->plus(*this); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Inverse elements of addition. Consistency error: " << " " << vCheck.back() << "\n";

    // Identity element of scalar multiplication.
    v->set(*this); xtmp->set(x); ytmp->set(y);
    v->scale(one); v->axpy(-one, *this); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Identity element of scalar multiplication. Consistency error: " << " " << vCheck.back() << "\n";

    // Consistency of scalar multiplication with field multiplication.
    v->set(*this); vtmp->set(*this);
    v->scale(b); v->scale(a); vtmp->scale(a*b); v->axpy(-one, *vtmp); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Consistency of scalar multiplication with field multiplication. Consistency error: " << " " << vCheck.back() << "\n";

    // Distributivity of scalar multiplication with respect to field addition.
    v->set(*this); vtmp->set(*this);
    v->scale(a+b); vtmp->scale(a); vtmp->axpy(b, *this); v->axpy(-one, *vtmp); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Distributivity of scalar multiplication with respect to field addition. Consistency error: " << " " << vCheck.back() << "\n";

    // Distributivity of scalar multiplication with respect to vector addition.
    v->set(*this); xtmp->set(x); ytmp->set(y);
    v->plus(x); v->scale(a); xtmp->scale(a); xtmp->axpy(a, *this); v->axpy(-one, *xtmp); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Distributivity of scalar multiplication with respect to vector addition. Consistency error: " << " " << vCheck.back() << "\n";

    // Commutativity of dot (inner) product over the field of reals.
    vCheck.push_back(std::abs(this->dot(x) - x.dot(*this)));
    *pStream << std::setw(width) << std::left << "Commutativity of dot (inner) product over the field of reals. Consistency error: " << " " << vCheck.back() << "\n";

    // Additivity of dot (inner) product.
    xtmp->set(x);
    xtmp->plus(y); vCheck.push_back(std::abs(this->dot(*xtmp) - x.dot(*this) - y.dot(*this)));
    *pStream << std::setw(width) << std::left << "Additivity of dot (inner) product. Consistency error: " << " " << vCheck.back() << "\n";

    // Consistency of scalar multiplication and norm.
    v->set(*this);
    Real vnorm = v->norm();
    if (vnorm == zero) {
      v->scale(a);
      vCheck.push_back(std::abs(v->norm() - zero));
    } else {
      v->scale(one/vnorm);
      vCheck.push_back(std::abs(v->norm() - one));
    }
    *pStream << std::setw(width) << std::left << "Consistency of scalar multiplication and norm. Consistency error: " << " " << vCheck.back() << "\n";

    // Reflexivity.
    v->set(*this);
    xtmp = Teuchos::rcp_const_cast<Vector>(Teuchos::rcpFromRef(this->dual()));
    ytmp = Teuchos::rcp_const_cast<Vector>(Teuchos::rcpFromRef(xtmp->dual()));
    v->axpy(-one, *ytmp); vCheck.push_back(v->norm());
    *pStream << std::setw(width) << std::left << "Reflexivity. Consistency error: " << " " << vCheck.back() << "\n\n";

    //*pStream << "************   End verification of linear algebra.\n\n";

    // Restore format state of pStream used for the header info.
    pStream->copyfmt(headerFormatState);
    *pStream << std::setw(width) << std::left << "********** End verification of linear algebra. " << "\n\n";

    // Restore format state of the original pStream.
    pStream->copyfmt(oldFormatState);

    return vCheck;
  }

}; // class Vector

} // namespace ROL

#endif