This file is indexed.

/usr/include/trilinos/ROL_SmoothedWorstCaseQuadrangle.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_SMOOTHEDWORSTCASEQUAD_HPP
#define ROL_SMOOTHEDWORSTCASEQUAD_HPP

#include "ROL_ExpectationQuad.hpp"

/** @ingroup risk_group
    \class ROL::SmoothedWorstCaseQuadrangle
    \brief Provides an interface for a smoothed version of the worst-case
           scenario risk measure using the expectation risk quadrangle.

    The worst-case scenario risk measure is
    \f[
       \mathcal{R}(X) = \sup_{\omega\in\Omega} X(\omega).
    \f]
    \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.
    Clearly, \f$\mathcal{R}\f$ is not differentiable.  As such, this class
    defines a smoothed version of \f$\mathcal{R}\f$ the expectation risk
    quadrangle.  In the nonsmooth case, the scalar regret function is
    \f$v(x) = 0\f$ if \f$x \le 0\f$ and \f$v(x) = \infty\f$ if \f$x > 0\f$.
    Similarly, the scalar error function is \f$e(x) = -x\f$ if \f$x \le 0 \f$
    and \f$e(x) = \infty\f$ if \f$x > 0\f$.  To smooth \f$\mathcal{R}\f$, we
    perform Moreau-Yosida regularization on the scalar error function, i.e.,
    \f[
      e_\epsilon(x) = \inf_{y\in\mathbb{R}} \left\{ e(y) + \frac{1}{2\epsilon}
                        (x-y)^2\right\}
                 %   = \left\{\begin{array}{l l}
                 %       -\left(x+\frac{\epsilon}{2}\right) &
                 %           \text{if \f$x \le -\epsilon\f$}\\
                 %       \frac{1}{2\epsilon}x^2 & \text{if \f$x > -\epsilon\f$}.
                 %     \end{array}\right.
    \f]
    for \f$\epsilon > 0\f$.  The corresponding scalar regret function is
    \f$v_\epsilon(x) = e_\epsilon(x) + x\f$.  \f$\mathcal{R}\f$ is then
    implemented as
    \f[
       \mathcal{R}(X) = \inf_{t\in\mathbb{R}}\left\{
           t + \mathbb{E}[v_\epsilon(X-t)] \right\}.
    \f]
    ROL implements this by augmenting the optimization vector \f$x_0\f$ with
    the parameter \f$t\f$, then minimizes jointly for \f$(x_0,t)\f$.
*/

namespace ROL {

template<class Real>
class SmoothedWorstCaseQuadrangle : public ExpectationQuad<Real> {
private:

  Real eps_;

  void checkInputs(void) const {
    Real zero(0);
    TEUCHOS_TEST_FOR_EXCEPTION((eps_ <= zero), std::invalid_argument,
      ">>> ERROR (ROL::SmoothedWorstCaseQuadrangle): Smoothing parameter must be positive!");
  }

public:
  /** \brief Constructor.

      @param[in]     eps     is the regularization parameter
  */
  SmoothedWorstCaseQuadrangle(const Real eps)
    : ExpectationQuad<Real>(), eps_(eps) {
    checkInputs();
  }

  /** \brief Constructor.

      @param[in]     parlist is a parameter list specifying inputs

      parlist should contain sublists "SOL"->"Risk Measure"->"Smoothed Worst-Case Quadrangle" and
      within the "Smoothed Worst-Case Quadrangle" sublist should have the following parameters
      \li "Smoothing Parameter" (must be positive).
  */
  SmoothedWorstCaseQuadrangle(Teuchos::ParameterList &parlist) : ExpectationQuad<Real>() {
    Teuchos::ParameterList& list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("Smoothed Worst-Case Quadrangle");
    eps_ = list.get<Real>("Smoothing Parameter");
    checkInputs();
  }

  Real error(Real x, int deriv = 0) {
    Real err(0), zero(0), half(0.5), one(1);
    if (deriv == 0) {
      err = (x <= -eps_) ? -(x+half*eps_) : half*x*x/eps_;
    }
    else if (deriv == 1) {
      err = (x <= -eps_) ? -one : x/eps_;
    }
    else {
      err = (x <= -eps_) ? zero : one/eps_;
    }
    return err;
  }

  Real regret(Real x, int deriv = 0) {
    Real zero(0), one(1);
    Real X = ((deriv==0) ? x : ((deriv==1) ? one : zero));
    Real reg = error(x,deriv) + X;
    return reg;
  }

  void checkRegret(void) {
    ExpectationQuad<Real>::checkRegret();
    // Check v'(-eps)
    Real x = -eps_, zero(0), one(1), two(2), p1(0.1);
    Real vx = zero, vy = zero;
    Real dv = regret(x,1);
    Real t = one;
    Real diff = zero;
    Real err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v'(-eps) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v'(x)"
                            << std::setw(20) << "(v(x+t)-v(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,0);
      vx = regret(x-t,0);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n";
    // check v''(-eps) 
    vx = zero;
    vy = zero;
    dv = regret(x,2);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v''(-eps) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v''(x)"
                            << std::setw(20) << "(v'(x+t)-v'(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,1);
      vx = regret(x-t,1);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n"; 
    // Check v'(0)
    x = zero;
    vx = zero;
    vy = zero;
    dv = regret(x,1);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v'(0) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v'(x)"
                            << std::setw(20) << "(v(x+t)-v(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,0);
      vx = regret(x-t,0);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n";
    // check v''(0) 
    vx = zero;
    vy = zero;
    dv = regret(x,2);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v''(0) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v''(x)"
                            << std::setw(20) << "(v'(x+t)-v'(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,1);
      vx = regret(x-t,1);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n"; 
    // Check v'(-1-eps)
    x = -eps_-one;
    vx = zero;
    vy = zero;
    dv = regret(x,1);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v'(-1-eps) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v'(x)"
                            << std::setw(20) << "(v(x+t)-v(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,0);
      vx = regret(x-t,0);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n";
    // check v''(-1-eps) 
    vx = zero;
    vy = zero;
    dv = regret(x,2);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v''(-1-eps) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v''(x)"
                            << std::setw(20) << "(v'(x+t)-v'(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,1);
      vx = regret(x-t,1);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n"; 
  }

};

}
#endif