/usr/include/trilinos/ROL_ScalarLinearEqualityConstraint.hpp is in libtrilinos-rol-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_AFFINE_HYPERPLANE_EQUALITY_CONSTRAINT_H
#define ROL_AFFINE_HYPERPLANE_EQUALITY_CONSTRAINT_H
#include "ROL_Vector.hpp"
#include "ROL_StdVector.hpp"
#include "ROL_EqualityConstraint.hpp"
/** @ingroup func_group
\class ROL::ScalarLinearEqualityConstraint
\brief This equality constraint defines an affine hyperplane.
ROL's scalar linear equality constraint interface implements
\f[
c(x) := \langle a, x\rangle_{\mathcal{X}^*,\mathcal{X}} - b = 0
\f]
where \f$a\in\mathcal{X}^*\f$ and \f$b\in\mathbb{R}\f$. The range space of
\f$c\f$ is an ROL::StdVector with dimension 1.
Note: If \f$a\neq 0\f$ then there exists an explicit solution of the
augmented system. Namely,
\f[
v_1 = I^{-1}(b_1-av_2)
\quad\text{and}\quad
v_2 = \frac{(\langle a,I^{-1}b_1\rangle_{\mathcal{X}^*,\mathcal{X}}
- b_2)}{\|a\|_{\mathcal{X}^*}^2}\,.
\f]
Moreover, note that \f$I^{-1}v\f$ for any \f$v\in\mathcal{X}^*\f$ is
implemented in ROL as v.dual().
---
*/
namespace ROL {
template <class Real>
class ScalarLinearEqualityConstraint : public EqualityConstraint<Real> {
private:
const Teuchos::RCP<Vector<Real> > a_; ///< Dual vector defining hyperplane
const Real b_; ///< Affine shift
public:
ScalarLinearEqualityConstraint(const Teuchos::RCP<Vector<Real> > &a,
const Real b)
: a_(a), b_(b) {}
void value(Vector<Real> &c, const Vector<Real> &x, Real &tol) {
StdVector<Real> cc = Teuchos::dyn_cast<StdVector<Real> >(c);
std::vector<Real> &cp = *(cc.getVector());
cp[0] = a_->dot(x.dual()) - b_;
}
void applyJacobian(Vector<Real> &jv, const Vector<Real> &v,
const Vector<Real> &x, Real &tol) {
StdVector<Real> jc = Teuchos::dyn_cast<StdVector<Real> >(jv);
std::vector<Real> &jp = *(jc.getVector());
jp[0] = a_->dot(v.dual());
}
void applyAdjointJacobian(Vector<Real> &ajv, const Vector<Real> &v,
const Vector<Real> &x, Real &tol) {
const StdVector<Real> vc = Teuchos::dyn_cast<const StdVector<Real> >(v);
const std::vector<Real> &vp = *(vc.getVector());
ajv.set(*a_);
ajv.scale(vp[0]);
}
void applyAdjointHessian(Vector<Real> &ahuv, const Vector<Real> &u,
const Vector<Real> &v, const Vector<Real> &x,
Real &tol) {
ahuv.zero();
}
std::vector<Real> solveAugmentedSystem(Vector<Real> &v1, Vector<Real> &v2,
const Vector<Real> &b1, const Vector<Real> &b2,
const Vector<Real> &x, Real &tol) {
StdVector<Real> v2c = Teuchos::dyn_cast<StdVector<Real> >(v2);
std::vector<Real> &v2p = *(v2c.getVector());
const StdVector<Real> b2c = Teuchos::dyn_cast<const StdVector<Real> >(b2);
const std::vector<Real> &b2p = *(b2c.getVector());
v2p[0] = (a_->dot(b1.dual()) - b2p[0])/a_->dot(*a_);
v1.set(b1.dual());
v1.axpy(-v2p[0],a_->dual());
std::vector<Real> out;
return out;
}
}; // class ScalarLinearEqualityConstraint
} // namespace ROL
#endif
|