This file is indexed.

/usr/include/trilinos/ROL_RiskMeasure.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_RISKMEASURE_HPP
#define ROL_RISKMEASURE_HPP

#include "ROL_RiskVector.hpp"

/** @ingroup stochastic_group 
    \class ROL::RiskMeasure
    \brief Provides the interface to implement risk measures.

    Let \f$(\Omega,\mathcal{F},\mathbb{P})\f$ be a complete space.
    Here, \f$\Omega\f$ is the set of outcomes,
    \f$\mathcal{F}\subseteq 2^\Omega\f$ is a \f$\sigma\f$-algebra of events and
    \f$\mathbb{P}:\mathcal{F}\to[0,1]\f$ is a probability measure.  Moreover,
    let \f$\mathcal{X}\f$ be a class of random variables.
    A risk measure is an extended real-valued functional that associates
    numerical values to random variables, i.e.,
    \f$\mathcal{R}:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}\f$.  In most cases,
    \f$\mathcal{X} = L^p(\Omega,\mathcal{F},\mathbb{P})\f$ for some
    \f$1\le p\le \infty\f$.

    There are a number of classifications for risk measures.  One important
    class are the coherent risk measures.  \f$\mathcal{R}\f$ is coherent
    if it satisfies the following four axioms:
    \li Convexity: \f$\mathcal{R}(\lambda X + (1-\lambda)X')
                            \le \lambda \mathcal{R}(X)
                               + (1-\lambda)\mathcal{R}(X')\f$
        for all \f$0 \le \lambda \le 1\f$;
    \li Translation Equivariance: \f$\mathcal{R}(X+C)
                                  = \mathcal{R}(X) + C\f$
        for all constants \f$C\f$;
    \li Monotonicity: If \f$X \le X'\f$ \f$\mathbb{P}\f$ almost everywhere
        then \f$\mathcal{R}(X) \le \mathcal{R}(X')\f$;
    \li Positive Homogeneity: \f$\mathcal{R}(tX) = t \mathcal{R}(X)\f$
        for all \f$t \ge 0\f$.

    Another useful characterization is law invariance.  \f$\mathcal{R}\f$ is
    law invariant if \f$\mathcal{R}(X) = \mathcal{R}(X')\f$ whenever
    \f$\mathbb{P}(X\le t) = \mathbb{P}(X'\le t)\f$ for all \f$t\in\mathbb{R}\f$.
    Law invariant risk measures are only functions of the distribution of the
    input random variable.

    ROL's risk measure base class is written in a way to exploit parallel
    sampling.  General risk measures may depend on global information such as
    the expected value of a random variable, \f$\mathbb{E}[X]\f$.  Thus,
    ROL::RiskMeasure contains functions to update intermediate information
    and to compute desired quantities such as risk values, gradients and
    Hessians applied to vectors.
*/

namespace ROL {

template<class Real>
class RiskMeasure {
protected:
  Real val_;
  Real gv_;
  Teuchos::RCP<Vector<Real> > g_;
  Teuchos::RCP<Vector<Real> > hv_;
  Teuchos::RCP<Vector<Real> > dualVector_;
  bool firstReset_;

public:
  virtual ~RiskMeasure() {}

  RiskMeasure(void) : val_(0), gv_(0), firstReset_(true) {}

  /** \brief Reset internal risk measure storage.
             Called for value and gradient computation.

             @param[out]  x0 is a user-provided optimization vector
             @param[in]   x  is a (potentially) augmented risk vector

             On input, \f$x\f$ carries \f$x_0\f$ and any statistics (scalars)
             associated with the risk measure. 
  */
  virtual void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
    x0 = Teuchos::rcp_const_cast<Vector<Real> >(
         Teuchos::dyn_cast<const RiskVector<Real> >(x).getVector());
    // Create memory for class members
    if ( firstReset_ ) {
      g_  = (x0->dual()).clone();
      hv_ = (x0->dual()).clone();
      dualVector_ = (x0->dual()).clone();
      firstReset_ = false;
    }
    // Zero member variables
    const Real zero(0);
    val_ = zero; gv_ = zero;
    g_->zero(); hv_->zero(); dualVector_->zero();
  }

  /** \brief Reset internal risk measure storage.
             Called for Hessian-times-a-vector computation.

             @param[out]  x0 is a user-provided optimization vector
             @param[in]   x  is a (potentially) augmented risk vector
             @param[out]  v0 is a user-provided direction vector
             @param[in]   v  is a (potentially) augmented risk vector

             On input, \f$x\f$ carries \f$x_0\f$ and any statistics (scalars)
             associated with the risk measure.  Similarly, \f$v\f$ carries
             \f$v_0\f$ and any statistics (scalars) associated with the risk
             measure.
  */
  virtual void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
                     Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
    reset(x0,x);
    // Get vector component of v.  This is important for CVaR.
    v0 = Teuchos::rcp_const_cast<Vector<Real> >(
         Teuchos::dyn_cast<const RiskVector<Real> >(v).getVector());
  }

  /** \brief Update internal risk measure storage for value computation.

      @param[in]    val      is the value of the random variable objective
                             function at the current sample point
      @param[in]    weight   is the weight associated with the current
                             sample point
  */
  virtual void update(const Real val, const Real weight) {
    val_ += weight * val;
  }

  /** \brief Update internal risk measure storage for gradient computation.

      @param[in]    val      is the value of the random variable objective
                             function at the current sample point
      @param[in]    g        is the gradient of the random variable objective
                             function at the current sample point
      @param[in]    weight   is the weight associated with the current
                             sample point
  */
  virtual void update(const Real val, const Vector<Real> &g, const Real weight) {
    g_->axpy(weight,g);
  }

  /** \brief Update internal risk measure storage for Hessian-time-a-vector computation.

      @param[in]    val      is the value of the random variable objective
                             function at the current sample point
      @param[in]    g        is the gradient of the random variable objective
                             function at the current sample point
      @param[in]    gv       is the gradient of the random variable objective
                             function at the current sample point applied to
                             the vector v0
      @param[in]    hv       is the Hessian of the random variable objective
                             function at the current sample point applied to
                             the vector v0
      @param[in]    weight   is the weight associated with the current
                             sample point
  */
  virtual void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
                      const Real weight) {
    hv_->axpy(weight,hv);
  }

  /** \brief Return risk measure value.

      @param[in]    sampler is the ROL::SampleGenerator used to sample
                    the objective function

      Upon return, getValue returns \f$\mathcal{R}(f(x_0))\f$ where \f$f(x_0)\f$
      denotes the random variable objective function evaluated at \f$x_0\f$.
  */
  virtual Real getValue(SampleGenerator<Real> &sampler) {
    Real val(0);
    sampler.sumAll(&val_,&val,1);
    return val;
  }

  /** \brief Return risk measure (sub)gradient.

      @param[out]   g       is the (sub)gradient of the risk measure
      @param[in]    sampler is the ROL::SampleGenerator used to sample
                    the objective function

      Upon return, getGradient returns \f$\theta\in\partial\mathcal{R}(f(x_0))\f$
      where \f$f(x_0)\f$ denotes the random variable objective function evaluated
      at \f$x_0\f$ and \f$\partial\mathcal{R}(X)\f$ denotes the subdifferential
      of \f$\mathcal{R}\f$ at \f$X\f$.
  */
  virtual void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
    sampler.sumAll(*g_,*dualVector_);
    (Teuchos::dyn_cast<RiskVector<Real> >(g)).setVector(*dualVector_);
  }

  /** \brief Return risk measure Hessian-times-a-vector.

      @param[out]   hv      is the Hessian-times-a-vector of the risk measure
      @param[in]    sampler is the ROL::SampleGenerator used to sample
                    the objective function

      Upon return, getHessVec returns \f$\nabla^2 \mathcal{R}(f(x_0))v_0\f$
      (if available)
      where \f$f(x_0)\f$ denotes the random variable objective function evaluated
      at \f$x_0\f$.
  */
  virtual void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
    sampler.sumAll(*hv_,*dualVector_);
    (Teuchos::dyn_cast<RiskVector<Real> >(hv)).setVector(*dualVector_);
  }
};

}

#endif