This file is indexed.

/usr/include/trilinos/ROL_PoissonInversion.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file
    \brief  Contains definitions for Poisson material inversion.
    \author Created by D. Ridzal and D. Kouri.
 */

#ifndef USE_HESSVEC 
#define USE_HESSVEC 1
#endif

#ifndef ROL_POISSONINVERSION_HPP
#define ROL_POISSONINVERSION_HPP

#include "ROL_StdVector.hpp"
#include "ROL_Objective.hpp"
#include "ROL_HelperFunctions.hpp"

#include "Teuchos_LAPACK.hpp"

namespace ROL {
namespace ZOO {

/** \brief Poisson material inversion.
 */
template<class Real>
class Objective_PoissonInversion : public Objective<Real> {

  typedef std::vector<Real> vector;
  typedef Vector<Real>      V;
  typedef StdVector<Real>   SV;

  typedef typename vector::size_type uint;

private:
  uint nu_;
  uint nz_;

  Real hu_;
  Real hz_;

  Real alpha_;

  Real eps_;
  int  reg_type_;

  Teuchos::RCP<const vector> getVector( const V& x ) {
    using Teuchos::dyn_cast;
    return dyn_cast<const SV>(x).getVector();
  }
  
  Teuchos::RCP<vector> getVector( V& x ) {
    using Teuchos::dyn_cast;
    return dyn_cast<SV>(x).getVector();
  }

public:

  /* CONSTRUCTOR */
  Objective_PoissonInversion(uint nz = 32, Real alpha = 1.e-4)
    : nu_(nz-1), nz_(nz), hu_(1./((Real)nu_+1.)), hz_(hu_),
      alpha_(alpha), eps_(1.e-4), reg_type_(2) {}

  /* REGULARIZATION DEFINITIONS */
  Real reg_value(const Vector<Real> &z) {
    using Teuchos::RCP;

    RCP<const vector> zp = getVector(z);

    Real val = 0.0;
    for (uint i = 0; i < nz_; i++) {
      if ( reg_type_ == 2 ) {
        val += alpha_/2.0 * hz_ * (*zp)[i]*(*zp)[i];
      }
      else if ( reg_type_ == 1 ) {
        val += alpha_ * hz_ * std::sqrt((*zp)[i]*(*zp)[i] + eps_);
      }
      else if ( reg_type_ == 0 ) {
        if ( i < nz_-1 ) {
          val += alpha_ * std::sqrt(std::pow((*zp)[i]-(*zp)[i+1],2.0)+eps_);
        }
      }
    }
    return val;
  }

  void reg_gradient(Vector<Real> &g, const Vector<Real> &z) {
    using Teuchos::RCP;     

    if ( reg_type_ == 2 ) {
      g.set(z);
      g.scale(alpha_*hz_);    
    } 
    else if ( reg_type_ == 1 ) {
      RCP<const vector> zp = getVector(z);
      RCP<vector >      gp = getVector(g);

      for (uint i = 0; i < nz_; i++) {
        (*gp)[i] = alpha_ * hz_ * (*zp)[i]/std::sqrt(std::pow((*zp)[i],2.0)+eps_);
      }
    }
    else if ( reg_type_ == 0 ) {
      RCP<const vector> zp = getVector(z);
      RCP<vector>       gp = getVector(g);

      Real diff = 0.0;
      for (uint i = 0; i < nz_; i++) {
        if ( i == 0 ) {
          diff     = (*zp)[i]-(*zp)[i+1];
          (*gp)[i] = alpha_ * diff/std::sqrt(std::pow(diff,2.0)+eps_);
        }
        else if ( i == nz_-1 ) {
          diff     = (*zp)[i-1]-(*zp)[i];
          (*gp)[i] = -alpha_ * diff/std::sqrt(std::pow(diff,2.0)+eps_);
        }
        else {
          diff      = (*zp)[i]-(*zp)[i+1];
          (*gp)[i]  = alpha_ * diff/std::sqrt(std::pow(diff,2.0)+eps_);
          diff      = (*zp)[i-1]-(*zp)[i];
          (*gp)[i] -= alpha_ * diff/std::sqrt(std::pow(diff,2.0)+eps_);
        }
      }
    }
  }

  void reg_hessVec(Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &z) {

    using Teuchos::RCP;

    if ( reg_type_ == 2 ) {
      hv.set(v);
      hv.scale(alpha_*hz_);
    }
    else if ( reg_type_ == 1 ) {
      RCP<const vector> zp  = getVector(z);
      RCP<const vector> vp  = getVector(v);
      RCP<vector>       hvp = getVector(hv);

      for (uint i = 0; i < nz_; i++) {
        (*hvp)[i] = alpha_*hz_*(*vp)[i]*eps_/std::pow(std::pow((*zp)[i],2.0)+eps_,3.0/2.0);
      }
    }
    else if ( reg_type_ == 0 ) {
      RCP<const vector> zp  = getVector(z);
      RCP<const vector> vp  = getVector(v);
      RCP<vector>       hvp = getVector(hv);

      Real diff1 = 0.0;
      Real diff2 = 0.0;
      for (uint i = 0; i < nz_; i++) {
        if ( i == 0 ) {
          diff1 = (*zp)[i]-(*zp)[i+1];
          diff1 = eps_/std::pow(std::pow(diff1,2.0)+eps_,3.0/2.0);
          (*hvp)[i] = alpha_* ((*vp)[i]*diff1 - (*vp)[i+1]*diff1);
        }
        else if ( i == nz_-1 ) {
          diff2 = (*zp)[i-1]-(*zp)[i];
          diff2 = eps_/std::pow(std::pow(diff2,2.0)+eps_,3.0/2.0);
          (*hvp)[i] = alpha_* (-(*vp)[i-1]*diff2 + (*vp)[i]*diff2);
        }
        else {
          diff1 = (*zp)[i]-(*zp)[i+1];
          diff1 = eps_/std::pow(std::pow(diff1,2.0)+eps_,3.0/2.0);
          diff2 = (*zp)[i-1]-(*zp)[i];
          diff2 = eps_/std::pow(std::pow(diff2,2.0)+eps_,3.0/2.0);
          (*hvp)[i] = alpha_* (-(*vp)[i-1]*diff2 + (*vp)[i]*(diff1 + diff2) - (*vp)[i+1]*diff1);
        }
      }
    }
  }

  /* FINITE ELEMENT DEFINTIONS */
  void apply_mass(Vector<Real> &Mf, const Vector<Real> &f ) {

    using Teuchos::RCP;
    RCP<const vector> fp  = getVector(f);
    RCP<vector>       Mfp = getVector(Mf);

    for (uint i = 0; i < nu_; i++) {
      if ( i == 0 ) {
        (*Mfp)[i] = hu_/6.0*(4.0*(*fp)[i] + (*fp)[i+1]);
      }
      else if ( i == nu_-1 ) {
        (*Mfp)[i] = hu_/6.0*((*fp)[i-1] + 4.0*(*fp)[i]);
      }
      else {
        (*Mfp)[i] = hu_/6.0*((*fp)[i-1] + 4.0*(*fp)[i] + (*fp)[i+1]);
      }
    }
  }

  void solve_poisson(Vector<Real> &u, const Vector<Real> &z, Vector<Real> &b) {

    using Teuchos::RCP;
    RCP<const vector> zp = getVector(z);
    RCP<vector>       up = getVector(u);
    RCP<vector>       bp = getVector(b);

    // Get Diagonal and Off-Diagonal Entries of PDE Jacobian
    vector d(nu_,1.0);
    vector o(nu_-1,1.0);
    for ( uint i = 0; i < nu_; i++ ) {
      d[i] = (std::exp((*zp)[i]) + std::exp((*zp)[i+1]))/hu_;
      if ( i < nu_-1 ) {
        o[i] *= -std::exp((*zp)[i+1])/hu_;
      }
    }

    // Solve Tridiagonal System Using LAPACK's SPD Tridiagonal Solver
    Teuchos::LAPACK<int,Real> lp;
    int info;
    int ldb  = nu_;
    int nhrs = 1;
    lp.PTTRF(nu_,&d[0],&o[0],&info);
    lp.PTTRS(nu_,nhrs,&d[0],&o[0],&(*bp)[0],ldb,&info);
    u.set(b);
  }

  Real evaluate_target(Real x) {
    return x*(1.0-x);
  }

  void apply_linearized_control_operator( Vector<Real> &Bd, const Vector<Real> &z, 
                                    const Vector<Real> &d,  const Vector<Real> &u ) {

    using Teuchos::RCP;
    
    RCP<const vector> zp  = getVector(z);
    RCP<const vector> up  = getVector(u);
    RCP<const vector> dp  = getVector(d);
    RCP<vector>       Bdp = getVector(Bd);

    for (uint i = 0; i < nu_; i++) {
      if ( i == 0 ) {
        (*Bdp)[i] = 1.0/hu_*( std::exp((*zp)[i])*(*up)[i]*(*dp)[i] 
                                  + std::exp((*zp)[i+1])*((*up)[i]-(*up)[i+1])*(*dp)[i+1] );
      }
      else if ( i == nu_-1 ) {
        (*Bdp)[i] = 1.0/hu_*( std::exp((*zp)[i])*((*up)[i]-(*up)[i-1])*(*dp)[i] 
                                  + std::exp((*zp)[i+1])*(*up)[i]*(*dp)[i+1] );
      }
      else {
        (*Bdp)[i] = 1.0/hu_*( std::exp((*zp)[i])*((*up)[i]-(*up)[i-1])*(*dp)[i] 
                                  + std::exp((*zp)[i+1])*((*up)[i]-(*up)[i+1])*(*dp)[i+1] );
      }
    }
  }

  void apply_transposed_linearized_control_operator( Vector<Real> &Bd, const Vector<Real> &z,
                                               const Vector<Real> &d,  const Vector<Real> &u ) {
    using Teuchos::RCP;

    RCP<const vector> zp  = getVector(z);
    RCP<const vector> up  = getVector(u);
    RCP<const vector> dp  = getVector(d);
    RCP<vector>       Bdp = getVector(Bd);

    for (uint i = 0; i < nz_; i++) {
      if ( i == 0 ) {
        (*Bdp)[i] = std::exp((*zp)[i])/hu_*(*up)[i]*(*dp)[i];
      }
      else if ( i == nz_-1 ) {
        (*Bdp)[i] = std::exp((*zp)[i])/hu_*(*up)[i-1]*(*dp)[i-1];
      }
      else {
        (*Bdp)[i] = std::exp((*zp)[i])/hu_*( ((*up)[i]-(*up)[i-1])*((*dp)[i]-(*dp)[i-1]) );
      }
    }
  }
  
  void apply_transposed_linearized_control_operator_2( Vector<Real> &Bd, const Vector<Real> &z, const Vector<Real> &v,
                                                 const Vector<Real> &d,  const Vector<Real> &u ) {
    using Teuchos::RCP;
    RCP<const vector> zp  = getVector(z);
    RCP<const vector> vp  = getVector(v);
    RCP<const vector> up  = getVector(u);
    RCP<const vector> dp  = getVector(d);
    RCP<vector>       Bdp = getVector(Bd);

    for (uint i = 0; i < nz_; i++) {
      if ( i == 0 ) {
        (*Bdp)[i] = (*vp)[i]*std::exp((*zp)[i])/hu_*(*up)[i]*(*dp)[i];
      }
      else if ( i == nz_-1 ) {
        (*Bdp)[i] = (*vp)[i]*std::exp((*zp)[i])/hu_*(*up)[i-1]*(*dp)[i-1];
      }
      else {
        (*Bdp)[i] = (*vp)[i]*std::exp((*zp)[i])/hu_*( ((*up)[i]-(*up)[i-1])*((*dp)[i]-(*dp)[i-1]) );
      }
    }
  }

  /* STATE AND ADJOINT EQUATION DEFINTIONS */
  void solve_state_equation(Vector<Real> &u, const Vector<Real> &z) {

    using Teuchos::RCP;
    using Teuchos::rcp;

    Real k1 = 1.0;
    Real k2 = 2.0;
    // Right Hand Side
    RCP<vector> bp = rcp( new vector(nu_, 0.0) );
    for ( uint i = 0; i < nu_; i++ ) {
      if ( (Real)(i+1)*hu_ < 0.5 ) {
       (*bp)[i] = 2.0*k1*hu_;
      }
      else if ( std::abs((Real)(i+1)*hu_ - 0.5) < ROL_EPSILON<Real>() ) {
       (*bp)[i] = (k1+k2)*hu_;
      }
      else if ( (Real)(i+1)*hu_ > 0.5 ) {
       (*bp)[i] = 2.0*k2*hu_;
      }
    }
   
    SV b(bp);
    // Solve Equation
    solve_poisson(u,z,b);
  }

  void solve_adjoint_equation(Vector<Real> &p, const Vector<Real> &u, const Vector<Real> &z) {

    using Teuchos::RCP;
    using Teuchos::rcp;

    RCP<const vector> up = getVector(u);
    RCP<vector> rp = rcp( new vector(nu_,0.0) );
    SV res(rp);

    for ( uint i = 0; i < nu_; i++) {
      (*rp)[i] = -((*up)[i]-evaluate_target((Real)(i+1)*hu_));
    }
    StdVector<Real> Mres( Teuchos::rcp( new std::vector<Real>(nu_,0.0) ) );
    apply_mass(Mres,res);
    solve_poisson(p,z,Mres);
  }

  void solve_state_sensitivity_equation(Vector<Real> &w, const Vector<Real> &v, 
                                        const Vector<Real> &u, const Vector<Real> &z) {

    using Teuchos::rcp;
    SV b( rcp( new vector(nu_,0.0) ) );
    apply_linearized_control_operator(b,z,v,u);
    solve_poisson(w,z,b);
  }

  void solve_adjoint_sensitivity_equation(Vector<Real> &q, const Vector<Real> &w, const Vector<Real> &v,
                                          const Vector<Real> &p, const Vector<Real> &u, const Vector<Real> &z) {

    using Teuchos::rcp;

    SV res( rcp( new vector(nu_,0.0) ) );
    apply_mass(res,w);
    SV res1( rcp( new vector(nu_,0.0) ) );
    apply_linearized_control_operator(res1,z,v,p);
    res.axpy(-1.0,res1);
    solve_poisson(q,z,res);
  }

  /* OBJECTIVE FUNCTION DEFINITIONS */
  Real value( const Vector<Real> &z, Real &tol ) {

    using Teuchos::RCP;
    using Teuchos::rcp;

    // SOLVE STATE EQUATION
    RCP<vector> up = rcp( new vector(nu_,0.0) );
    SV u( up );

    solve_state_equation(u,z);

    // COMPUTE MISFIT
    RCP<vector> rp = rcp( new vector(nu_,0.0) );
    SV res( rp );

    for ( uint i = 0; i < nu_; i++) {
      (*rp)[i] = ((*up)[i]-evaluate_target((Real)(i+1)*hu_));
    }

    RCP<V> Mres = res.clone();
    apply_mass(*Mres,res);
    return 0.5*Mres->dot(res) + reg_value(z);
  } 

  void gradient( Vector<Real> &g, const Vector<Real> &z, Real &tol ) {

    using Teuchos::rcp; 

    // SOLVE STATE EQUATION
    SV u( rcp( new vector(nu_,0.0) ) );
    solve_state_equation(u,z);

    // SOLVE ADJOINT EQUATION
    SV p( Teuchos::rcp( new std::vector<Real>(nu_,0.0) ) );
    solve_adjoint_equation(p,u,z);

    // Apply Transpose of Linearized Control Operator
    apply_transposed_linearized_control_operator(g,z,p,u);
   
    // Regularization gradient
    SV g_reg( rcp( new vector(nz_,0.0) ) );
    reg_gradient(g_reg,z); 

    // Build Gradient
    g.plus(g_reg);
  }
#if USE_HESSVEC
  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &z, Real &tol ) {

    using Teuchos::rcp;

    // SOLVE STATE EQUATION
    SV u( rcp( new vector(nu_,0.0) ) );
    solve_state_equation(u,z);

    // SOLVE ADJOINT EQUATION
    SV p( rcp( new vector(nu_,0.0) ) );
    solve_adjoint_equation(p,u,z);

    // SOLVE STATE SENSITIVITY EQUATION
    SV w( rcp( new vector(nu_,0.0) ) );
    solve_state_sensitivity_equation(w,v,u,z);

    // SOLVE ADJOINT SENSITIVITY EQUATION
    SV q( rcp( new vector(nu_,0.0) ) );
    solve_adjoint_sensitivity_equation(q,w,v,p,u,z);

    // Apply Transpose of Linearized Control Operator
    apply_transposed_linearized_control_operator(hv,z,q,u);
  
    // Apply Transpose of Linearized Control Operator
    SV tmp( rcp( new vector(nz_,0.0) ) );
    apply_transposed_linearized_control_operator(tmp,z,w,p);
    hv.axpy(-1.0,tmp); 

    // Apply Transpose of 2nd Derivative of Control Operator
    tmp.zero();
    apply_transposed_linearized_control_operator_2(tmp,z,v,p,u);
    hv.plus(tmp);

    // Regularization hessVec
    SV hv_reg( rcp( new vector(nz_,0.0) ) );
    reg_hessVec(hv_reg,v,z);

    // Build hessVec
    hv.plus(hv_reg);
  }
#endif

  void invHessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {

    using Teuchos::RCP;
    using Teuchos::rcp;

    // Cast hv and v vectors to std::vector.
    RCP<vector> hvp       = getVector(hv);

    std::vector<Real> vp(*getVector(v));

    int dim = static_cast<int>(vp.size());


    // Compute dense Hessian.
    Teuchos::SerialDenseMatrix<int, Real> H(dim, dim);
    Objective_PoissonInversion<Real> & obj = *this; 
    H = computeDenseHessian<Real>(obj, x);

    // Compute eigenvalues, sort real part.
    std::vector<vector> eigenvals = computeEigenvalues<Real>(H);
    std::sort((eigenvals[0]).begin(), (eigenvals[0]).end());

    // Perform 'inertia' correction.
    Real inertia = (eigenvals[0])[0];
    Real correction = 0.0;
    if ( inertia <= 0.0 ) {
      correction = 2.0*std::abs(inertia);
      if ( inertia == 0.0 ) {
        int cnt = 0;
        while ( eigenvals[0][cnt] == 0.0 ) {
          cnt++;
        }
        correction = 0.5*eigenvals[0][cnt];
        if ( cnt == dim-1 ) {
          correction = 1.0;
        }
      }
      for (int i=0; i<dim; i++) {
        H(i,i) += correction;
      }
    }

    // Compute dense inverse Hessian.
    Teuchos::SerialDenseMatrix<int, Real> invH = computeInverse<Real>(H);

    // Apply dense inverse Hessian.
    Teuchos::SerialDenseVector<int, Real> hv_teuchos(Teuchos::View, &((*hvp)[0]), dim);
    const Teuchos::SerialDenseVector<int, Real> v_teuchos(Teuchos::View, &(vp[0]), dim);
    hv_teuchos.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, invH, v_teuchos, 0.0);
  }

};

template<class Real>
void getPoissonInversion( Teuchos::RCP<Objective<Real> > &obj,
                          Teuchos::RCP<Vector<Real> >    &x0,
                          Teuchos::RCP<Vector<Real> >    &x ) {
  // Problem dimension
  int n = 128;

  // Get Initial Guess
  Teuchos::RCP<std::vector<Real> > x0p = Teuchos::rcp(new std::vector<Real>(n,0.0));
  for ( int i = 0; i < n; i++ ) {
    (*x0p)[i] = 1.5;
  }
  x0 = Teuchos::rcp(new StdVector<Real>(x0p));

  // Get Solution
  Teuchos::RCP<std::vector<Real> > xp = Teuchos::rcp(new std::vector<Real>(n,0.0));
  Real h = 1.0/((Real)n+1), pt = 0.0, k1 = 1.0, k2 = 2.0;
  for( int i = 0; i < n; i++ ) {
    pt = (Real)(i+1)*h;
    if ( pt >= 0.0 && pt < 0.5 ) {
      (*xp)[i] = std::log(k1);
    }
    else if ( pt >= 0.5 && pt < 1.0 ) {
      (*xp)[i] = std::log(k2); 
    }
  }
  x = Teuchos::rcp(new StdVector<Real>(xp));

  // Instantiate Objective Function
  obj = Teuchos::rcp(new Objective_PoissonInversion<Real>(n,1.e-6));
}

} // End ZOO Namespace
} // End ROL Namespace

#endif