This file is indexed.

/usr/include/trilinos/ROL_GMRES.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_GMRES_H
#define ROL_GMRES_H

/** \class ROL::GMRES
    \brief Preconditioned GMRES solver.
*/

#include "ROL_Krylov.hpp"
#include "ROL_LinearOperator.hpp"
#include "ROL_Vector.hpp"
#include "ROL_Types.hpp"

#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_LAPACK.hpp"

namespace ROL {

template<class Real>
class GMRES : public Krylov<Real> {

  typedef Teuchos::SerialDenseMatrix<int, Real> SDMatrix;
  typedef Teuchos::SerialDenseVector<int, Real> SDVector;

private:
 
  Teuchos::RCP<Vector<Real> > r_;
  Teuchos::RCP<Vector<Real> > z_;
  Teuchos::RCP<Vector<Real> > w_;
   
  Teuchos::RCP<SDMatrix> H_;      // quasi-Hessenberg matrix
  Teuchos::RCP<SDVector> cs_;     // Givens Rotations cosine components
  Teuchos::RCP<SDVector> sn_;     // Givens Rotations sine components
  Teuchos::RCP<SDVector> s_;      
  Teuchos::RCP<SDVector> y_;      
  Teuchos::RCP<SDVector> cnorm_;   

  Teuchos::RCP<std::vector<Real> > res_;
  
  bool isInitialized_;
  bool useInexact_;
  bool useInitialGuess_;    // If false, inital x will be ignored and zero vec used
  int maxit_; 
  Real absTol_;
  Real relTol_;
 
  Teuchos::LAPACK<int,Real> lapack_;

public:
  
  GMRES( Teuchos::ParameterList &parlist ) : isInitialized_(false) {

    using Teuchos::RCP;
    using Teuchos::rcp;
    using std::vector; 

    Real zero(0), oem2(1.e-2), oem4(1.e-4);

    Teuchos::ParameterList &gList = parlist.sublist("General");
    Teuchos::ParameterList &kList = gList.sublist("Krylov");
    
    useInexact_      = gList.get("Inexact Hessian-Times-A-Vector",false);
    maxit_           = kList.get("Iteration Limit",50);
    absTol_          = kList.get("Absolute Tolerance", oem4);
    relTol_          = kList.get("Relative Tolerance", oem2);
    useInitialGuess_ = kList.get("Use Initial Guess",false);

    H_     = rcp( new SDMatrix( maxit_+1, maxit_ ) );
    cs_    = rcp( new SDVector( maxit_ ) );
    sn_    = rcp( new SDVector( maxit_ ) );
    s_     = rcp( new SDVector( maxit_+1 ) ); 
    y_     = rcp( new SDVector( maxit_+1 ) );
    cnorm_ = rcp( new SDVector( maxit_ ) );   
    res_   = rcp( new std::vector<Real>(maxit_+1,zero) );
       
  }
 
  void run( Vector<Real> &x, LinearOperator<Real> &A, const Vector<Real> &b,
            LinearOperator<Real> &M, int &iter, int &flag ) {

    using Teuchos::RCP;
 
    flag = 0; 

    Real zero(0), one(1);

    if ( !isInitialized_ ) {
      r_  = b.clone();
      w_  = b.clone();
      z_  = x.clone();

      isInitialized_ = true;
    }

    Real itol  = std::sqrt(ROL_EPSILON<Real>()); 

    // Compute initial residual
    if(useInitialGuess_) {
    
      A.apply(*r_,x,itol);
      r_->scale(-one);
      r_->plus(b);       // r = b-Ax
 
    }
    else {
      x.zero();
      r_->set(b);
    }

    Real temp  = 0;

    std::vector<RCP<Vector<Real > > > V;
    std::vector<RCP<Vector<Real > > > Z;

    (*res_)[0] = r_->norm();
     
    Real rtol  = std::min(absTol_,relTol_*(*res_)[0]);

    V.push_back(b.clone());
    (V[0])->set(*r_);
    (V[0])->scale(one/(*res_)[0]);    

    (*s_)(0) = (*res_)[0];

    for( iter=0; iter<maxit_; ++iter ) {

//      std::cout << (*res_)[iter] << std::endl;

      if( useInexact_ ) {
        itol = rtol/(maxit_*(*res_)[iter]); 
      }

      Z.push_back(x.clone());

      // Apply right preconditioner
      M.applyInverse(*(Z[iter]),*(V[iter]),itol);

      // Apply operator
      A.apply(*w_,*(Z[iter]),itol);

      // Evaluate coefficients and orthogonalize using Gram-Schmidt
      for( int k=0; k<=iter; ++k ) {
        (*H_)(k,iter) = w_->dot(*(V[k]));
        w_->axpy( -(*H_)(k,iter), *(V[k]) );
      } 
     
      (*H_)(iter+1,iter) = w_->norm();

      V.push_back( b.clone() );
      (V[iter+1])->set(*w_);
      (V[iter+1])->scale(one/((*H_)(iter+1,iter)));

      // Apply Givens rotations
      for( int k=0; k<=iter-1; ++k ) {
        temp            =  (*cs_)(k)*(*H_)(k,iter) + (*sn_)(k)*(*H_)(k+1,iter);
        (*H_)(k+1,iter) = -(*sn_)(k)*(*H_)(k,iter) + (*cs_)(k)*(*H_)(k+1,iter); 
        (*H_)(k,iter)   = temp;
      } 

      // Form i-th rotation matrix
      if( (*H_)(iter+1,iter) == zero ) {
        (*cs_)(iter) = one;
        (*sn_)(iter) = zero;
      }
      else if ( std::abs((*H_)(iter+1,iter)) > std::abs((*H_)(iter,iter)) ) { 
        temp = (*H_)(iter,iter) / (*H_)(iter+1,iter);
        (*sn_)(iter) = one / std::sqrt( one + temp*temp );
        (*cs_)(iter) = temp*(*sn_)(iter); 
      }
      else {
        temp = (*H_)(iter+1,iter) / (*H_)(iter,iter);
        (*cs_)(iter) = one / std::sqrt( one + temp*temp );
        (*sn_)(iter) = temp*(*cs_)(iter);  
      }
     
      // Approximate residual norm
      temp               = (*cs_)(iter)*(*s_)(iter);
      (*s_)(iter+1)      = -(*sn_)(iter)*(*s_)(iter);
      (*s_)(iter)        = temp;
      (*H_)(iter,iter)   = (*cs_)(iter)*(*H_)(iter,iter) + (*sn_)(iter)*(*H_)(iter+1,iter);
      (*H_)(iter+1,iter) = zero;
      (*res_)[iter+1]    = std::abs((*s_)(iter+1));
  
      // Update solution approximation.
      const char uplo = 'U';
      const char trans = 'N';
      const char diag = 'N';
      const char normin = 'N';
      Real scaling = zero;
      int info = 0;
      *y_ = *s_;
      lapack_.LATRS(uplo, trans, diag, normin, iter+1, H_->values(), maxit_+1, y_->values(), &scaling, cnorm_->values(), &info);

      z_->zero();

      for( int k=0; k<=iter;++k ) {
        z_->axpy((*y_)(k),*(Z[k]));
      }

      if( (*res_)[iter+1] <= rtol ) {
        // Update solution vector
        x.plus(*z_);  
        break;
      }

      if(iter == maxit_) {
        flag = 1;
      }
    } // loop over iter

  }  


}; // class GMRES

} // namespace ROL

#endif // ROL_GMRES_H