This file is indexed.

/usr/include/trilinos/ROL_Exponential.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_EXPONENTIAL_HPP
#define ROL_EXPONENTIAL_HPP

#include "ROL_Distribution.hpp"
#include "Teuchos_ParameterList.hpp"

namespace ROL {

template<class Real>
class Exponential : public Distribution<Real> {
private:
  Real loc_;
  Real scale_;

  size_t compute_coeff(const size_t m, const size_t k) const {
    if ( k == 0 || m == 0 || m == 1 ) {
      return 1;
    }
    size_t val = 1;
    for (size_t i = m-k; i < m; i++) {
      val *= (i+1);
    }
    return val;
  }

public: 
  Exponential(const Real loc = 0., const Real scale = 1.)
    : loc_(loc), scale_((scale>0.) ? scale : 1.) {}

  Exponential(Teuchos::ParameterList &parlist) {
    loc_   = parlist.sublist("SOL").sublist("Distribution").sublist("Exponential").get("Location",0.);
    scale_ = parlist.sublist("SOL").sublist("Distribution").sublist("Exponential").get("Scale",1.);
    scale_ = (scale_ > 0.) ? scale_ : 1.;
  }

  Real evaluatePDF(const Real input) const {
    return ((input >= loc_) ? scale_*std::exp(-scale_*(input-loc_)) : 0.);
  }

  Real evaluateCDF(const Real input) const {
    return ((input >= loc_) ? 1.-std::exp(-scale_*(input-loc_)) : 0.);
  }

  Real integrateCDF(const Real input) const {
    return ((input >= loc_) ?
      (input-loc_) - (1.-std::exp(-scale_*(input-loc_)))/scale_ : 0.);
  }

  Real invertCDF(const Real input) const {
    return -std::log(1.-input)/scale_;
  }

  Real moment(const size_t m) const {
    Real val = 0., coeff = 0.;
    for (size_t i = 0; i < m+1; i++) {
      coeff = compute_coeff(m,i);
      val  += coeff*std::pow(loc_,(Real)(m-i))/std::pow(scale_,(Real)i);
    } 
    return val;
  }

  Real lowerBound(void) const {
    return 0.;
  }

  Real upperBound(void) const {
    return ROL_INF<Real>();
  }
 
  void test(std::ostream &outStream = std::cout ) const {
    size_t size = 3;
    std::vector<Real> X(size,0.);
    std::vector<int> T(size,0);
    X[0] = loc_-4.0*(Real)rand()/(Real)RAND_MAX;
    T[0] = 0;
    X[1] = loc_;
    T[1] = 1;
    X[2] = loc_+4.0*(Real)rand()/(Real)RAND_MAX;
    T[2] = 0;
    Distribution<Real>::test(X,T,outStream);
  }
};

}

#endif