/usr/include/trilinos/ROL_EqualityConstraint.hpp is in libtrilinos-rol-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_EQUALITY_CONSTRAINT_H
#define ROL_EQUALITY_CONSTRAINT_H
#include "ROL_Vector.hpp"
#include "ROL_Types.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_LAPACK.hpp"
#include <iostream>
/** @ingroup func_group
\class ROL::EqualityConstraint
\brief Defines the equality constraint operator interface.
ROL's equality constraint interface is designed for Fréchet differentiable
operators \f$c:\mathcal{X} \rightarrow \mathcal{C}\f$, where \f$\mathcal{X}\f$
and \f$\mathcal{C}\f$ are Banach spaces. The constraints are of the form
\f[
c(x) = 0 \,.
\f]
The basic operator interface, to be
implemented by the user, requires:
\li #value -- constraint evaluation.
It is strongly recommended that the user additionally overload:
\li #applyJacobian -- action of the constraint Jacobian --the default is
a finite-difference approximation;
\li #applyAdjointJacobian -- action of the adjoint of the constraint Jacobian --the default is
a finite-difference approximation.
The user may also overload:
\li #applyAdjointHessian -- action of the adjoint of the constraint Hessian --the default
is a finite-difference approximation based on the adjoint Jacobian;
\li #solveAugmentedSystem -- solution of the augmented system --the default is an iterative
scheme based on the action of the Jacobian and its adjoint.
\li #applyPreconditioner -- action of a constraint preconditioner --the default is null-op.
---
*/
namespace ROL {
template <class Real>
class EqualityConstraint {
private:
bool activated_;
public:
virtual ~EqualityConstraint() {}
/** \brief Evaluate the constraint operator \f$c:\mathcal{X} \rightarrow \mathcal{C}\f$
at \f$x\f$.
@param[out] c is the result of evaluating the constraint operator at @b x; a constraint-space vector
@param[in] x is the constraint argument; an optimization-space vector
@param[in,out] tol is a tolerance for inexact evaluations; currently unused
On return, \f$\mathsf{c} = c(x)\f$,
where \f$\mathsf{c} \in \mathcal{C}\f$, \f$\mathsf{x} \in \mathcal{X}\f$.
---
*/
virtual void value(Vector<Real> &c,
const Vector<Real> &x,
Real &tol) = 0;
/** \brief Apply the constraint Jacobian at \f$x\f$, \f$c'(x) \in L(\mathcal{X}, \mathcal{C})\f$,
to vector \f$v\f$.
@param[out] jv is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector
@param[in] v is an optimization-space vector
@param[in] x is the constraint argument; an optimization-space vector
@param[in,out] tol is a tolerance for inexact evaluations; currently unused
On return, \f$\mathsf{jv} = c'(x)v\f$, where
\f$v \in \mathcal{X}\f$, \f$\mathsf{jv} \in \mathcal{C}\f$. \n\n
The default implementation is a finite-difference approximation.
---
*/
virtual void applyJacobian(Vector<Real> &jv,
const Vector<Real> &v,
const Vector<Real> &x,
Real &tol);
/** \brief Apply the adjoint of the the constraint Jacobian at \f$x\f$, \f$c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\f$,
to vector \f$v\f$.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector
@param[in] v is a dual constraint-space vector
@param[in] x is the constraint argument; an optimization-space vector
@param[in,out] tol is a tolerance for inexact evaluations; currently unused
On return, \f$\mathsf{ajv} = c'(x)^*v\f$, where
\f$v \in \mathcal{C}^*\f$, \f$\mathsf{ajv} \in \mathcal{X}^*\f$. \n\n
The default implementation is a finite-difference approximation.
---
*/
virtual void applyAdjointJacobian(Vector<Real> &ajv,
const Vector<Real> &v,
const Vector<Real> &x,
Real &tol);
/** \brief Apply the adjoint of the the constraint Jacobian at \f$x\f$, \f$c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\f$,
to vector \f$v\f$.
@param[out] ajv is the result of applying the adjoint of the constraint Jacobian to @b v at @b x; a dual optimization-space vector
@param[in] v is a dual constraint-space vector
@param[in] x is the constraint argument; an optimization-space vector
@param[in] dualv is a vector used for temporary variables; a constraint-space vector
@param[in,out] tol is a tolerance for inexact evaluations; currently unused
On return, \f$\mathsf{ajv} = c'(x)^*v\f$, where
\f$v \in \mathcal{C}^*\f$, \f$\mathsf{ajv} \in \mathcal{X}^*\f$. \n\n
The default implementation is a finite-difference approximation.
---
*/
virtual void applyAdjointJacobian(Vector<Real> &ajv,
const Vector<Real> &v,
const Vector<Real> &x,
const Vector<Real> &dualv,
Real &tol);
/** \brief Apply the derivative of the adjoint of the constraint Jacobian at \f$x\f$
to vector \f$u\f$ in direction \f$v\f$,
according to \f$ v \mapsto c''(x)(v,\cdot)^*u \f$.
@param[out] ahuv is the result of applying the derivative of the adjoint of the constraint Jacobian at @b x to vector @b u in direction @b v; a dual optimization-space vector
@param[in] u is the direction vector; a dual constraint-space vector
@param[in] v is an optimization-space vector
@param[in] x is the constraint argument; an optimization-space vector
@param[in,out] tol is a tolerance for inexact evaluations; currently unused
On return, \f$ \mathsf{ahuv} = c''(x)(v,\cdot)^*u \f$, where
\f$u \in \mathcal{C}^*\f$, \f$v \in \mathcal{X}\f$, and \f$\mathsf{ahuv} \in \mathcal{X}^*\f$. \n\n
The default implementation is a finite-difference approximation based on the adjoint Jacobian.
---
*/
virtual void applyAdjointHessian(Vector<Real> &ahuv,
const Vector<Real> &u,
const Vector<Real> &v,
const Vector<Real> &x,
Real &tol);
/** \brief Approximately solves the <em> augmented system </em>
\f[
\begin{pmatrix}
I & c'(x)^* \\
c'(x) & 0
\end{pmatrix}
\begin{pmatrix}
v_{1} \\
v_{2}
\end{pmatrix}
=
\begin{pmatrix}
b_{1} \\
b_{2}
\end{pmatrix}
\f]
where \f$v_{1} \in \mathcal{X}\f$, \f$v_{2} \in \mathcal{C}^*\f$,
\f$b_{1} \in \mathcal{X}^*\f$, \f$b_{2} \in \mathcal{C}\f$,
\f$I : \mathcal{X} \rightarrow \mathcal{X}^*\f$ is an identity or Riesz
operator, and \f$0 : \mathcal{C}^* \rightarrow \mathcal{C}\f$
is a zero operator.
@param[out] v1 is the optimization-space component of the result
@param[out] v2 is the dual constraint-space component of the result
@param[in] b1 is the dual optimization-space component of the right-hand side
@param[in] b2 is the constraint-space component of the right-hand side
@param[in] x is the constraint argument; an optimization-space vector
@param[in,out] tol is the nominal relative residual tolerance
On return, \f$ [\mathsf{v1} \,\, \mathsf{v2}] \f$ approximately
solves the augmented system, where the size of the residual is
governed by special stopping conditions. \n\n
The default implementation is the preconditioned generalized
minimal residual (GMRES) method, which enables the use of
nonsymmetric preconditioners.
---
*/
virtual std::vector<Real> solveAugmentedSystem(Vector<Real> &v1,
Vector<Real> &v2,
const Vector<Real> &b1,
const Vector<Real> &b2,
const Vector<Real> &x,
Real &tol);
/** \brief Apply a constraint preconditioner at \f$x\f$, \f$P(x) \in L(\mathcal{C}, \mathcal{C}^*)\f$,
to vector \f$v\f$. Ideally, this preconditioner satisfies the following relationship:
\f[
\left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,,
\f]
where R is the appropriate Riesz map in \f$L(\mathcal{X}^*, \mathcal{X})\f$. It is used by the #solveAugmentedSystem method.
@param[out] pv is the result of applying the constraint preconditioner to @b v at @b x; a dual constraint-space vector
@param[in] v is a constraint-space vector
@param[in] x is the preconditioner argument; an optimization-space vector
@param[in] g is the preconditioner argument; a dual optimization-space vector, unused
@param[in,out] tol is a tolerance for inexact evaluations
On return, \f$\mathsf{pv} = P(x)v\f$, where
\f$v \in \mathcal{C}\f$, \f$\mathsf{pv} \in \mathcal{C}^*\f$. \n\n
The default implementation is the Riesz map in \f$L(\mathcal{C}, \mathcal{C}^*)\f$.
---
*/
virtual void applyPreconditioner(Vector<Real> &pv,
const Vector<Real> &v,
const Vector<Real> &x,
const Vector<Real> &g,
Real &tol) {
pv.set(v.dual());
}
EqualityConstraint(void) : activated_(true) {}
/** \brief Update constraint functions.
x is the optimization variable,
flag = true if optimization variable is changed,
iter is the outer algorithm iterations count.
*/
virtual void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {}
/** \brief Check if the vector, v, is feasible
*/
virtual bool isFeasible( const Vector<Real> &v ) { return true; }
/** \brief Turn on constraints
*/
void activate(void) { this->activated_ = true; }
/** \brief Turn off constraints
*/
void deactivate(void) { this->activated_ = false; }
/** \brief Check if constraints are on
*/
bool isActivated(void) { return this->activated_; }
/** \brief Finite-difference check for the constraint Jacobian application.
Details here.
*/
virtual std::vector<std::vector<Real> > checkApplyJacobian( const Vector<Real> &x,
const Vector<Real> &v,
const Vector<Real> &jv,
const std::vector<Real> &steps,
const bool printToStream = true,
std::ostream & outStream = std::cout,
const int order = 1 ) ;
/** \brief Finite-difference check for the constraint Jacobian application.
Details here.
*/
virtual std::vector<std::vector<Real> > checkApplyJacobian( const Vector<Real> &x,
const Vector<Real> &v,
const Vector<Real> &jv,
const bool printToStream = true,
std::ostream & outStream = std::cout,
const int numSteps = ROL_NUM_CHECKDERIV_STEPS,
const int order = 1 ) ;
/** \brief Finite-difference check for the application of the adjoint of constraint Jacobian.
Details here. (This function should be deprecated)
*/
virtual std::vector<std::vector<Real> > checkApplyAdjointJacobian(const Vector<Real> &x,
const Vector<Real> &v,
const Vector<Real> &c,
const Vector<Real> &ajv,
const bool printToStream = true,
std::ostream & outStream = std::cout,
const int numSteps = ROL_NUM_CHECKDERIV_STEPS ) ;
/* \brief Check the consistency of the Jacobian and its adjoint. Verify that the deviation
\f$|\langle w^\top,Jv\rangle-\langle adj(J)w,v|\f$ is sufficiently small.
@param[in] w is a dual constraint-space vector \f$w\in \mathcal{C}^\ast\f$
@param[in] v is an optimization space vector \f$v\in \mathcal{X}\f$
@param[in] x is the constraint argument \f$x\in\mathcal{X}\f$
@param[in] printToStream is is a flag that turns on/off output
@param[in] outStream is the output stream
Returns the deviation.
*/
virtual Real checkAdjointConsistencyJacobian(const Vector<Real> &w,
const Vector<Real> &v,
const Vector<Real> &x,
const bool printToStream = true,
std::ostream & outStream = std::cout) {
return checkAdjointConsistencyJacobian(w, v, x, w.dual(), v.dual(), printToStream, outStream);
}
virtual Real checkAdjointConsistencyJacobian(const Vector<Real> &w,
const Vector<Real> &v,
const Vector<Real> &x,
const Vector<Real> &dualw,
const Vector<Real> &dualv,
const bool printToStream = true,
std::ostream & outStream = std::cout);
/** \brief Finite-difference check for the application of the adjoint of constraint Hessian.
Details here.
*/
virtual std::vector<std::vector<Real> > checkApplyAdjointHessian(const Vector<Real> &x,
const Vector<Real> &u,
const Vector<Real> &v,
const Vector<Real> &hv,
const std::vector<Real> &step,
const bool printToScreen = true,
std::ostream & outStream = std::cout,
const int order = 1 ) ;
/** \brief Finite-difference check for the application of the adjoint of constraint Hessian.
Details here.
*/
virtual std::vector<std::vector<Real> > checkApplyAdjointHessian(const Vector<Real> &x,
const Vector<Real> &u,
const Vector<Real> &v,
const Vector<Real> &hv,
const bool printToScreen = true,
std::ostream & outStream = std::cout,
const int numSteps = ROL_NUM_CHECKDERIV_STEPS,
const int order = 1 ) ;
// Definitions for parametrized (stochastic) equality constraints
private:
std::vector<Real> param_;
protected:
const std::vector<Real> getParameter(void) const {
return param_;
}
public:
virtual void setParameter(const std::vector<Real> ¶m) {
param_.assign(param.begin(),param.end());
}
}; // class EqualityConstraint
} // namespace ROL
#include "ROL_EqualityConstraintDef.hpp"
#endif
|