This file is indexed.

/usr/include/trilinos/ROL_DiodeCircuit.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
#ifndef ROL_DIODECIRCUIT_HPP
#define ROL_DIODECIRCUIT_HPP

#include "ROL_Objective.hpp"
#include "ROL_StdVector.hpp"
#include "ROL_ScaledStdVector.hpp"
#include "ROL_BoundConstraint.hpp"

#include <iostream>
#include <fstream>
#include <string>

/** \file
    \brief Contains definitions for the diode circuit problem.
    \author Created by T. Takhtaganov, D. Ridzal, D. Kouri
*/


namespace ROL {
namespace ZOO {

/*!
  \brief The diode circuit problem.
  
  The diode circuit problem:
  \f{eqnarray*}{
  \min_{I_S,R_S} \,\, \frac{1}{2}\sum\limits_{n=1}^N (I_n-I_n^{meas})^2 \\
  \text{s.t.}\;\;\begin{cases}c(I_S,R_S,I_1,V^{src}_1)=0\\ \dots \\c(I_S,R_S,I_N,V^{src}_N)=0\end{cases}
  \f}
  where
  \f[c(I_S,R_S,I_n,V^{src}_n)=I_n - I_S\left(\exp\left(\frac{-I_n R_S+V^{src}_n}{V_{th}}\right)-1\right)\f].
*/
template<class Real>
class Objective_DiodeCircuit : public Objective<Real> {

  typedef std::vector<Real>            vector;
  typedef Vector<Real>                 V;
  typedef StdVector<Real>              STDV;
  typedef PrimalScaledStdVector<Real>  PSV;
  typedef DualScaledStdVector<Real>    DSV; 
  typedef typename vector::size_type   uint;

private:
  /// Thermal voltage (constant)
  Real Vth_; 
  /// Vector of measured currents in DC analysis (data)
  Teuchos::RCP<std::vector<Real> > Imeas_;
  /// Vector of source voltages in DC analysis (input) 
  Teuchos::RCP<std::vector<Real> > Vsrc_; 
  /// If true, use Lambert-W function to solve circuit, else use Newton's method.
  bool lambertw_; 
  /// Percentage of noise to add to measurements; if 0.0 - no noise.
  Real noise_; 
  /// If true, use adjoint gradient computation, else compute gradient using sensitivities
  bool use_adjoint_;
  /// 0 - use FD(with scaling),
  /// 1 - use exact implementation (with second order derivatives),
  /// 2 - use Gauss-Newton approximation (first order derivatives only)
  int use_hessvec_;

public:

  /*!
    \brief A constructor generating data
    
    Given thermal voltage, minimum and maximum values of source voltages and
    a step size, values of Is and Rs generates vector of source voltages and
    solves nonlinear diode equation to  populate the vector of measured
    currents, which is later used as data. If noise is nonzero, adds random
    perturbation to data on the order of the magnitude of the components.
    Sets the flag to use Lambert-W function or Newton's method to solve
    circuit. Sets the flags to use adjoint gradient computation and one of
    three Hessian-vector implementations.

    ---
   */
  Objective_DiodeCircuit(Real Vth, Real Vsrc_min, Real Vsrc_max, Real Vsrc_step,
                         Real true_Is, Real true_Rs,
                         bool lambertw, Real noise,
                         bool use_adjoint, int use_hessvec)
    : Vth_(Vth), lambertw_(lambertw), use_adjoint_(use_adjoint), use_hessvec_(use_hessvec) {
    int n  = (Vsrc_max-Vsrc_min)/Vsrc_step + 1;
    Vsrc_  = Teuchos::rcp(new std::vector<Real>(n,0.0));
    Imeas_ = Teuchos::rcp(new std::vector<Real>(n,0.0));
    std::ofstream output ("Measurements.dat");
    Real left = 0.0, right = 1.0;
    // Generate problem data
    if ( lambertw_ ) {
      std::cout << "Generating data using Lambert-W function." << std::endl;
    }
    else {
      std::cout << "Generating data using Newton's method." << std::endl;
    }
    for ( int i = 0; i < n; i++ ) {
      (*Vsrc_)[i] = Vsrc_min+i*Vsrc_step;
      if (lambertw_) {
        (*Imeas_)[i] = lambertWCurrent(true_Is,true_Rs,(*Vsrc_)[i]);
      }
      else {
        Real I0 = 1.e-12; // initial guess for Newton
        (*Imeas_)[i] = Newton(I0,Vsrc_min+i*Vsrc_step,true_Is,true_Rs);
      }
      if ( noise > 0.0 ) {
        (*Imeas_)[i] += noise*pow(10,(int)log10((*Imeas_)[i]))*random(left, right);
      }
      // Write generated data into file
      if( output.is_open() ) {
        output << std::setprecision(8) << std::scientific << (*Vsrc_)[i] << "  " << (*Imeas_)[i] << "\n";
      }
    }
    output.close();
  }

  /*!
    \brief A constructor using data from given file

    Given thermal voltage and a file with two columns - one for source
    voltages, another for corresponding currents - populates vectors of source
    voltages and measured currents. If noise is nonzero, adds random
    perturbation to data on the order of the magnitude of the components. Sets
    the flag to use Lambert-W function or Newton's method to solve circuit.
    Sets the flags to use adjoint gradient computation and one of three
    Hessian-vector implementations.

    ---
  */
  Objective_DiodeCircuit(Real Vth, std::ifstream& input_file,
                         bool lambertw, Real noise,
                         bool use_adjoint, int use_hessvec)
    : Vth_(Vth), lambertw_(lambertw), use_adjoint_(use_adjoint), use_hessvec_(use_hessvec) {
    std::string line;
    int dim = 0;
    for( int k = 0; std::getline(input_file,line); ++k ) {
      dim = k;
    } // count number of lines
    input_file.clear(); // reset to beginning of file
    input_file.seekg(0,std::ios::beg); 
    Vsrc_  = Teuchos::rcp(new std::vector<Real>(dim,0.0));
    Imeas_ = Teuchos::rcp(new std::vector<Real>(dim,0.0));
    Real Vsrc, Imeas;
    std::cout << "Using input file to generate data." << "\n";
    for( int i = 0; i < dim; i++ ){
      input_file >> Vsrc;
      input_file >> Imeas;
      (*Vsrc_)[i] = Vsrc;
      (*Imeas_)[i] = Imeas;
    }
    input_file.close();
  }

  //! Change the method for solving the circuit if needed
  void set_method(bool lambertw){
    lambertw_ = lambertw;
  }

  //! Solve circuit given optimization parameters Is and Rs
  void solve_circuit(Vector<Real> &I, const Vector<Real> &S){
    using Teuchos::RCP;
    RCP<vector> Ip = getVector(I);
    RCP<const vector> Sp = getVector(S);

    uint n = Ip->size();
    
    if ( lambertw_ ) {
      // Using Lambert-W function
      Real lambval;
      for ( uint i = 0; i < n; i++ ) {
        lambval = lambertWCurrent((*Sp)[0],(*Sp)[1],(*Vsrc_)[i]);
        (*Ip)[i] = lambval;
      }
    }
    else{	
      // Using Newton's method      
      Real I0 = 1.e-12; // Initial guess for Newton
      for ( uint i = 0; i < n; i++ ) {
        (*Ip)[i] = Newton(I0,(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
      }
    }
  }

  /*!
    \brief Evaluate objective function

    \f$\frac{1}{2}\sum\limits_{i=1}^{N}(I_i-I^{meas}_i)^2\f$
    
    ---
   */
  Real value(const Vector<Real> &S, Real &tol){
    using Teuchos::RCP;  using Teuchos::rcp;
    RCP<const vector> Sp = getVector(S);
    uint n = Imeas_->size();
    STDV I( rcp( new vector(n,0.0) ) );
    RCP<vector> Ip = getVector(I);

    // Solve state equation
    solve_circuit(I,S);
    Real val = 0;
    
    for ( uint i = 0; i < n; i++ ) {
      val += ((*Ip)[i]-(*Imeas_)[i])*((*Ip)[i]-(*Imeas_)[i]);
    }
    return val/2.0;
  }
    
  //! Compute the gradient of the reduced objective function either using adjoint or using sensitivities
  void gradient(Vector<Real> &g, const Vector<Real> &S, Real &tol){

    using Teuchos::RCP;  using Teuchos::rcp;
    RCP<vector> gp = getVector(g);
    RCP<const vector> Sp = getVector(S);
    
    uint n = Imeas_->size();
    
    STDV I( rcp( new vector(n,0.0) ) );
    RCP<vector> Ip = getVector(I);
    
    // Solve state equation      
    solve_circuit(I,S);
    
    if ( use_adjoint_ ) {      
      // Compute the gradient of the reduced objective function using adjoint computation
      STDV lambda( rcp( new vector(n,0.0) ) );
      RCP<vector> lambdap = getVector(lambda);
      
      // Solve adjoint equation
      solve_adjoint(lambda,I,S);
           
      // Compute gradient
      (*gp)[0] = 0.0; (*gp)[1] = 0.0;
      for ( uint i = 0; i < n; i++ ) {
        (*gp)[0] += diodeIs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])*(*lambdap)[i];
        (*gp)[1] += diodeRs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])*(*lambdap)[i];		
      }      
    }
    else {
      // Compute the gradient of the reduced objective function using sensitivities
      STDV sensIs( rcp( new vector(n,0.0) ) );
      STDV sensRs( rcp( new vector(n,0.0) ) );
      // Solve sensitivity equations
      solve_sensitivity_Is(sensIs,I,S);
      solve_sensitivity_Rs(sensRs,I,S);
      
      RCP<vector> sensIsp = getVector(sensIs);
      RCP<vector> sensRsp = getVector(sensRs);
      
      // Write sensitivities into file
      std::ofstream output ("Sensitivities.dat");
      for ( uint k = 0; k < n; k++ ) {
        if ( output.is_open() ) {
          output << std::scientific << (*sensIsp)[k] << " " << (*sensRsp)[k] << "\n";
        }
      }
      output.close();
      // Compute gradient
      (*gp)[0] = 0.0; (*gp)[1] = 0.0;
      for( uint i = 0; i < n; i++ ) {
        (*gp)[0] += ((*Ip)[i]-(*Imeas_)[i])*(*sensIsp)[i];
        (*gp)[1] += ((*Ip)[i]-(*Imeas_)[i])*(*sensRsp)[i];	
      }      
    }
  }
  
  /*!
    \brief Compute the Hessian-vector product of the reduced objective function
    
    Hessian-times-vector computation.

    ---
   */
  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &S, Real &tol ){

    using Teuchos::RCP;  using Teuchos::rcp;    

    if ( use_hessvec_ == 0 ) {
      Objective<Real>::hessVec(hv, v, S, tol);
    }
    else if ( use_hessvec_ == 1 ) {
      RCP<vector> hvp = getVector(hv);
      RCP<const vector> vp = getVector(v);
      RCP<const vector> Sp = getVector(S);
      
      uint n = Imeas_->size();
      
      STDV I( rcp( new vector(n,0.0) ) );
      RCP<vector> Ip = getVector(I);
      
      // Solve state equation      
      solve_circuit(I,S);
      
      STDV lambda( rcp( new vector(n,0.0) ) );
      RCP<vector> lambdap = getVector(lambda);
      
      // Solve adjoint equation
      solve_adjoint(lambda,I,S);
      
      STDV w( rcp( new vector(n,0.0) ) );
      RCP<vector> wp = getVector(w);
      
      // Solve state sensitivity equation
      for ( uint i = 0; i < n; i++ ){
        (*wp)[i] = ( (*vp)[0] * diodeIs( (*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1] )
                   + (*vp)[1] * diodeRs( (*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1] ) )
                   / diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
      }
      
      STDV p( rcp( new vector(n,0.0) ) );
      RCP<vector> pp = getVector(p);
      
      // Solve for p
      for ( uint j = 0; j < n; j++ ) {
        (*pp)[j] = ( (*wp)[j] + (*lambdap)[j] * diodeII( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] )
                   * (*wp)[j] - (*lambdap)[j] * diodeIIs( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] )
                   * (*vp)[0] - (*lambdap)[j] * diodeIRs( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] )
                   * (*vp)[1] ) / diodeI( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] );
      }
      
      // Assemble Hessian-vector product
      (*hvp)[0] = 0.0;(*hvp)[1] = 0.0;
      for ( uint k = 0; k < n; k++ ) {
        (*hvp)[0] += diodeIs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )* (*pp)[k]
                     - (*lambdap)[k] * (*wp)[k] * diodeIIs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
                     + (*lambdap)[k] * (*vp)[0] * diodeIsIs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
                     + (*lambdap)[k] * (*vp)[1] * diodeIsRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] );
        (*hvp)[1] += diodeRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] ) * (*pp)[k]
                     - (*lambdap)[k] * (*wp)[k] * diodeIRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
                     + (*lambdap)[k] * (*vp)[0] * diodeIsRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
                     + (*lambdap)[k] * (*vp)[1] * diodeRsRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] );
      }
    }
    else if ( use_hessvec_ == 2 ) {
      //Gauss-Newton approximation
      RCP<vector> hvp = getVector(hv);
      RCP<const vector> vp = getVector(v);
      RCP<const vector> Sp = getVector(S);
      
      uint n = Imeas_->size();

      STDV I( rcp( new vector(n,0.0) ) );
      RCP<vector> Ip = getVector(I);

      // Solve state equation                                                                                
      solve_circuit(I,S);

      // Compute sensitivities
      STDV sensIs( rcp( new vector(n,0.0) ) );
      STDV sensRs( rcp( new vector(n,0.0) ) );

      // Solve sensitivity equations                                                                          
      solve_sensitivity_Is(sensIs,I,S);
      solve_sensitivity_Rs(sensRs,I,S);
      RCP<vector> sensIsp = getVector(sensIs);
      RCP<vector> sensRsp = getVector(sensRs);
      
      // Compute approximate Hessian
      Real H11 = 0.0; Real H12 = 0.0; Real H22 = 0.0;
      for ( uint k = 0; k < n; k++ ) {
        H11 += (*sensIsp)[k]*(*sensIsp)[k];
        H12 += (*sensIsp)[k]*(*sensRsp)[k];
        H22 += (*sensRsp)[k]*(*sensRsp)[k];
      }
      
      // Compute approximate Hessian-times-vector
      (*hvp)[0] = H11*(*vp)[0] + H12*(*vp)[1];
      (*hvp)[1] = H12*(*vp)[0] + H22*(*vp)[1];
    }
    else {
      ROL::Objective<Real>::hessVec( hv, v, S, tol ); // Use parent class function	
    }
  }

  /*!
    \brief Generate data to plot objective function

    Generates a file with three columns - Is value, Rs value, objective value. To plot with gnuplot type:
    gnuplot;
    set dgrid3d 100,100;
    set hidden3d;
    splot "Objective.dat" u 1:2:3 with lines;

    ---
   */
  void generate_plot(Real Is_lo, Real Is_up, Real Is_step, Real Rs_lo, Real Rs_up, Real Rs_step){
    Teuchos::RCP<std::vector<Real> > S_rcp = Teuchos::rcp(new std::vector<Real>(2,0.0) );
    StdVector<Real> S(S_rcp);
    std::ofstream output ("Objective.dat");

    Real Is = 0.0;
    Real Rs = 0.0;
    Real val = 0.0;
    Real tol = 1.e-16;
    int n = (Is_up-Is_lo)/Is_step + 1;
    int m = (Rs_up-Rs_lo)/Rs_step + 1;
    for ( int i = 0; i < n; i++ ) {
      Is = Is_lo + i*Is_step;
      for ( int j = 0; j < m; j++ ) {
        Rs = Rs_lo + j*Rs_step;
        (*S_rcp)[0] = Is;
        (*S_rcp)[1] = Rs;
        val = value(S,tol);
        if ( output.is_open() ) {
          output << std::scientific << Is << " " << Rs << " " << val << std::endl;
        }
      }
    }
    output.close();
  }

private:

  Teuchos::RCP<const vector> getVector( const V& x ) {
    using Teuchos::dyn_cast;  using Teuchos::getConst;
    try { 
      return dyn_cast<const STDV>(getConst(x)).getVector();
    }
    catch (std::exception &e) {
      try { 
        return dyn_cast<const PSV>(getConst(x)).getVector();
      }
      catch (std::exception &e) {
        return dyn_cast<const DSV>(getConst(x)).getVector();
      }
    }
  }

  Teuchos::RCP<vector> getVector( V& x ) {
    using Teuchos::dyn_cast;
    try {
      return dyn_cast<STDV>(x).getVector(); 
    }
    catch (std::exception &e) {
      try {
        return dyn_cast<PSV>(x).getVector(); 
      }
      catch (std::exception &e) {
        return dyn_cast<DSV>(x).getVector(); 
      }
    }
  }

  Real random(const Real left, const Real right) const {
    return (Real)rand()/(Real)RAND_MAX * (right - left) + left;
  }

  /*!
    \brief Diode equation
    
    Diode equation formula:
    \f$
    I-I_S\left(\exp\left(\frac{V_{src}-IR_S}{V_{th}}\right)-1\right)
    \f$.

    ---
  */
  Real diode(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return I-Is*(exp((Vsrc-I*Rs)/Vth_)-1);
  }
  
  //! Derivative of diode equation wrt I
  Real diodeI(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return 1+Is*exp((Vsrc-I*Rs)/Vth_)*(Rs/Vth_);
  }

  //! Derivative of diode equation wrt Is
  Real diodeIs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return 1-exp((Vsrc-I*Rs)/Vth_);
  }

  //! Derivative of diode equation wrt Rs  
  Real diodeRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return Is*exp((Vsrc-I*Rs)/Vth_)*(I/Vth_);
  }
  
  //! Second derivative of diode equation wrt I^2
  Real diodeII(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return -Is*exp((Vsrc-I*Rs)/Vth_)*(Rs/Vth_)*(Rs/Vth_);
  }

  //! Second derivative of diode equation wrt I and Is
  Real diodeIIs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return exp((Vsrc-I*Rs)/Vth_)*(Rs/Vth_);
  }

  //! Second derivative of diode equation wrt I and Rs
  Real diodeIRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return (Is/Vth_)*exp((Vsrc-I*Rs)/Vth_)*(1-(I*Rs)/Vth_);
  }

  //! Second derivative of diode equation wrt Is^2
  Real diodeIsIs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return 0;
  }
  
  //! Second derivative of diode equation wrt Is and Rs
  Real diodeIsRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return exp((Vsrc-I*Rs)/Vth_)*(I/Vth_);
  }

  //! Second derivative of diode equation wrt Rs^2
  Real diodeRsRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    return -Is*exp((Vsrc-I*Rs)/Vth_)*(I/Vth_)*(I/Vth_);
  }

  /*!
    \brief Newton's method with line search

    Solves the diode equation for the current using Newton's method.

    ---
   */
  Real Newton(const Real I, const Real Vsrc, const Real Is, const Real Rs){
    Real EPS = 1.e-16;
    Real TOL = 1.e-13;
    int MAXIT = 200;
    Real IN = I;
    Real fval  = diode(IN,Vsrc,Is,Rs);
    Real dfval = 0.0;
    Real IN_tmp   = 0.0;
    Real fval_tmp = 0.0;
    Real alpha = 1.0;
    for ( int i = 0; i < MAXIT; i++ ) {
      if ( std::abs(fval) < TOL ) {
        // std::cout << "converged with |fval| = " << std::abs(fval) << " and TOL = " << TOL << "\n";
        break;
      }
      dfval = diodeI(IN,Vsrc,Is,Rs);
      if( std::abs(dfval) < EPS ){
        std::cout << "denominator is too small" << std::endl;
        break;
      }
      
      alpha    = 1.0;
      IN_tmp   = IN - alpha*fval/dfval;
      fval_tmp = diode(IN_tmp,Vsrc,Is,Rs);
      while ( std::abs(fval_tmp) >= (1.0-1.e-4*alpha)*std::abs(fval) ) {
        alpha   /= 2.0;
        IN_tmp   = IN - alpha*fval/dfval;
        fval_tmp = diode(IN_tmp,Vsrc,Is,Rs);
        if ( alpha < std::sqrt(EPS) ) { 
          // std::cout << "Step tolerance met\n";
          break;
        }
      }
      IN   = IN_tmp;
      fval = fval_tmp;
      // if ( i == MAXIT-1){
      //   std::cout << "did not converge  " << std::abs(fval) << "\n";
      // }
    }
    return IN;
  }    
  
  /*!
    \brief Lambert-W function for diodes
    
    Function      : DeviceSupport::lambertw
    Purpose       : provides a lambert-w function for diodes and BJT's.
    Special Notes :
    
    Purpose.  Evaluate principal branch of Lambert W function at x.
    
    w = w(x) is the value of Lambert's function.
    ierr = 0 indicates a safe return.
    ierr = 1 if x is not in the domain.
    ierr = 2 if the computer arithmetic contains a bug.
    xi may be disregarded (it is the error).
    
    Prototype: void lambertw( Real, Real, int, Real);
    
    Reference:
    T.C. Banwell
    Bipolar transistor circuit analysis using the Lambert W-function,
    IEEE Transactions on Circuits and Systems I: Fundamental Theory
    and Applications
    
    vol. 47, pp. 1621-1633, Nov. 2000.
    
    Scope         : public
    Creator       : David Day,  SNL
    Creation Date : 04/16/02

    ---
  */
  void lambertw(Real x, Real &w, int &ierr, Real &xi){
    int i = 0, maxit = 10;
    const Real turnpt = -exp(-1.), c1 = 1.5, c2 = .75;
    Real r, r2, r3, s, mach_eps, relerr = 1., diff;
    mach_eps = 2.e-15;   // float:2e-7
    ierr = 0;
    
    if ( x > c1 ) {
      w  = c2*log(x);
      xi = log( x/ w) - w;
    }
    else {
      if ( x >= 0.0 ) {
        w = x;
        if ( x == 0. ) {
          return;
        }
        if ( x < (1-c2) ) {
          w = x*(1.-x + c1*x*x);
        }
        xi = - w;
      }
      else {
        if ( x >= turnpt ){
      	  if ( x > -0.2 ){
      	    w  = x*(1.0-x + c1*x*x);
      	    xi = log(1.0-x + c1*x*x) - w;
      	  }
      	  else {
      	    diff = x-turnpt;
      	    if ( diff < 0.0 ) {
              diff = -diff;
            }
      	    w = -1 + sqrt(2.0*exp(1.))*sqrt(x-turnpt);
      	    if ( diff == 0.0 ) {
              return;
            }
      	    xi = log( x/ w) - w;
      	  }
        }
        else {
          ierr = 1; // x is not in the domain.
          w = -1.0;
          return;
        }
      }
    }
    
    while ( relerr > mach_eps  && i < maxit ) {
      r  = xi/(w+1.0);   //singularity at w=-1
      r2 = r*r;
      r3 = r2*r;
      s  = 6.*(w+1.0)*(w+1.0);
      w  = w * ( 1.0 + r + r2/(2.0*( w+1.0)) - (2. * w -1.0)*r3/s );
      w  = ((w*x < 0.0) ? -w : w);
      xi = log( x/ w) - w;
      
      relerr = ((x > 1.0) ? xi/w : xi);
      relerr = ((relerr < 0.0) ? -relerr : relerr);
      ++i;
    }
    ierr = ((i == maxit) ? 2 : ierr);
  }
    
  /*!
    \brief Find currents using Lambert-W function.

    Reference:
    T.C. Banwell
    Bipolar transistor circuit analysis using the Lambert W-function,
    IEEE Transactions on Circuits and Systems I: Fundamental Theory
    and Applications
    vol. 47, pp. 1621-1633, Nov. 2000.

    ---
  */
  Real lambertWCurrent(Real Is, Real Rs, Real Vsrc){
    Real arg1        = (Vsrc + Is*Rs)/Vth_;
    Real evd         = exp(arg1);
    Real lambWArg    = Is*Rs*evd/Vth_;
    Real lambWReturn = 0.0;
    Real lambWError  = 0.0;
    int ierr = 0;
    lambertw(lambWArg, lambWReturn, ierr, lambWError);
    if ( ierr == 1 ) {
     std::cout << "LambertW error: argument is not in the domain" <<  std::endl;
     return -1.0;
    }
    if ( ierr == 2 ) {
      std::cout << "LambertW error: BUG!" <<  std::endl;
    }
    Real Id = -Is+Vth_*(lambWReturn)/Rs;
    //Real Gd = lambWReturn / ((1 + lambWReturn)*RS);     
    return Id;
  }
    
  /*!
    \brief Solve the adjoint equation
   
    \f$\lambda_i = \frac{(I^{meas}_i-I_i)}{\frac{\partial c}{\partial I}(I_i,V^{src}_i,I_S,R_S)}\f$

   ---
   */
  void solve_adjoint(Vector<Real> &lambda, const Vector<Real> &I, const Vector<Real> &S){
    
    using Teuchos::RCP;
    RCP<vector> lambdap = getVector(lambda);
    RCP<const vector> Ip = getVector(I);
    RCP<const vector> Sp = getVector(S);
    
    uint n = Ip->size();
    for ( uint i = 0; i < n; i++ ){
      (*lambdap)[i] = ((*Imeas_)[i]-(*Ip)[i])
                      /diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
    }
  }

  /*!
    \brief Solve the sensitivity equation wrt Is
    
    Computes sensitivity \f[\frac{\partial I}{\partial Is}\f]
    
    ---
  */
  void solve_sensitivity_Is(Vector<Real> &sens, const Vector<Real> &I, const Vector<Real> &S){

    using Teuchos::RCP;
    RCP<vector> sensp = getVector(sens);
    RCP<const vector> Ip = getVector(I);
    RCP<const vector> Sp = getVector(S);     
    
    uint n = Ip->size();
    for ( uint i = 0; i < n; i++ ) {
      (*sensp)[i] = -diodeIs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])
                    /diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
    }
  }
    
  /*!
    \brief Solve the sensitivity equation wrt Rs
    
    Computes sensitivity \f[\frac{\partial I}{\partial Rs}\f]
    
    ---
  */
  void solve_sensitivity_Rs(Vector<Real> &sens, const Vector<Real> &I, const Vector<Real> &S){
         
    using Teuchos::RCP;
    RCP<vector> sensp = getVector(sens);
    RCP<const vector> Ip = getVector(I);
    RCP<const vector> Sp = getVector(S);
    
    uint n = Ip->size();
    for ( uint i = 0; i < n; i++ ) {
      (*sensp)[i] = -diodeRs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])
                    /diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
    }
  }
};  // class Objective_DiodeCircuit 


  // template<class Real>
  // void getDiodeCircuit( Teuchos::RCP<Objective<Real> > &obj, Vector<Real> &x0, Vector<Real> &x ) {
  //   // Cast Initial Guess and Solution Vectors                                     
  //   Teuchos::RCP<std::vector<Real> > x0p =
  //     Teuchos::rcp_const_cast<std::vector<Real> >((Teuchos::dyn_cast<PrimalScaledStdVector<Real> >(x0)).getVector());
  //   Teuchos::RCP<std::vector<Real> > xp =
  //     Teuchos::rcp_const_cast<std::vector<Real> >((Teuchos::dyn_cast<PrimalScaledStdVector<Real> >(x)).getVector());

  //   int n = xp->size();

  //   // Resize Vectors                                                                                              
  //   n = 2;
  //   x0p->resize(n);
  //   xp->resize(n);

  //   // Instantiate Objective Function                                                                              
  //   obj = Teuchos::rcp( new Objective_DiodeCircuit<Real> (0.02585,0.0,1.0,1.e-2));
  //   //ROL::Objective_DiodeCircuit<Real> obj(0.02585,0.0,1.0,1.e-2);

  //   // Get Initial Guess
  //   (*x0p)[0] = 1.e-13;
  //   (*x0p)[1] = 0.2;
    
  //   // Get Solution
  //   (*xp)[0] = 1.e-12;
  //   (*xp)[1] = 0.25;
    
  // }


} //end namespace ZOO
} //end namespace ROL

#endif