This file is indexed.

/usr/include/trilinos/ROL_ConvexCombinationRiskMeasure.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_CONVEXCOMBINATIONRISKMEASURE_HPP
#define ROL_CONVEXCOMBINATIONRISKMEASURE_HPP

#include "ROL_RiskMeasureFactory.hpp"

/** @ingroup risk_group
    \class ROL::ConvexCombinationRiskMeasure
    \brief Provides an interface for a convex combination of
           risk measures.

    This function provides the capability to produce a convex combination
    of risk measure, i.e.,
    \f[
       \mathcal{R}(X) = \sum_{k=1}^n \lambda_k \mathcal{R}_k(X)
    \f]
    where \f$\mathcal{R}_k\f$ are risk measures and \f$\lambda_k \ge 0\f$
    with \f$\lambda_1 + \ldots + \lambda_n = 1\f$.  In general,
    \f$\mathcal{R}\f$ is not law-invariant or coherent unless each
    \f$\mathcal{R}_k\f$ is.
*/

namespace ROL {

template<class Real>
class ConvexCombinationRiskMeasure : public RiskMeasure<Real> {
private:
  typedef typename std::vector<Real>::size_type uint;

  std::vector<Real> lambda_;
  std::vector<Teuchos::ParameterList> parlist_;
  std::vector<Teuchos::RCP<RiskMeasure<Real> > > risk_;
  uint size_;

  Teuchos::RCP<Vector<Real> > dualVector0_;
  bool firstReset_;

  void checkInputs(void) const {
    uint lSize = lambda_.size(), rSize = risk_.size();
    TEUCHOS_TEST_FOR_EXCEPTION((lSize!=rSize),std::invalid_argument,
      ">>> ERROR (ROL::ConvexCombinationRiskMeasure): Convex combination parameter and risk measure arrays have different sizes!");
    Real sum(0), zero(0), one(1);
    for (uint i = 0; i < lSize; ++i) {
      TEUCHOS_TEST_FOR_EXCEPTION((lambda_[i]>one || lambda_[i]<zero), std::invalid_argument,
        ">>> ERROR (ROL::ConvexCombinationRiskMeasure): Element of convex combination parameter array out of range!");
      TEUCHOS_TEST_FOR_EXCEPTION(risk_[i] == Teuchos::null, std::invalid_argument,
        ">>> ERROR (ROL::ConvexCombinationRiskMeasure): Risk measure pointer is null!");
      sum += lambda_[i];
    }
    TEUCHOS_TEST_FOR_EXCEPTION((std::abs(sum-one) > std::sqrt(ROL_EPSILON<Real>())),std::invalid_argument,
      ">>> ERROR (ROL::ConvexCombinationRiskMeasure): Coefficients do not sum to one!");
  }

public:
  /** \brief Constructor.

      @param[in]     parlist is a parameter list specifying inputs

      parlist should contain sublists "SOL"->"Risk Measure"->"Convex Combination Risk Measure" and
      within the "Convex Combination Risk Measure" sublist should have the following parameters
      \li "Convex Combination Parameters" (greater than 0 and sum to 1)
      \li Sublists labeled 1 to n with risk measure definitions.
  */
  ConvexCombinationRiskMeasure(Teuchos::ParameterList &parlist)
    : RiskMeasure<Real>(), size_(0), firstReset_(true) {
    Teuchos::ParameterList &list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("Convex Combination Risk Measure");
    // Get convex combination parameters
    Teuchos::Array<Real> lambda
      = Teuchos::getArrayFromStringParameter<Real>(list,"Convex Combination Parameters");
    lambda_ = lambda.toVector();
    size_ = lambda_.size();
    // Build risk measures
    risk_.clear(); risk_.resize(size_,Teuchos::null);
    parlist_.clear(); parlist_.resize(size_);
    for (uint i = 0; i < size_; ++i) {
      std::ostringstream convert;
      convert << i;
      std::string si = convert.str();
      Teuchos::ParameterList &ilist = list.sublist(si);
      std::string name = ilist.get<std::string>("Name");
      parlist_[i].sublist("SOL").sublist("Risk Measure").set("Name",name);
      parlist_[i].sublist("SOL").sublist("Risk Measure").sublist(name) = ilist;
      risk_[i] = RiskMeasureFactory<Real>(parlist_[i]);
    }
    // Check inputs
    checkInputs();
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
    std::vector<Real> stat, stati;
    int N = 0, Ni = 0;
    // Must make x a risk vector with appropriate statistic
    const RiskVector<Real> &xr = Teuchos::dyn_cast<const RiskVector<Real> >(x);
    Teuchos::RCP<const Vector<Real> > xptr = xr.getVector();
    xr.getStatistic(stat);
    x0 = Teuchos::rcp_const_cast<Vector<Real> >(xptr);
    for (uint i = 0; i < size_; ++i) {
      // Build temporary risk vector
      RiskVector<Real> xri(parlist_[i],x0);
      // Set statistic from original risk vector
      xri.getStatistic(stati);
      Ni = stati.size();
      for (int j = 0; j < Ni; ++j) {
        stati[j] = stat[N+j];
      }
      xri.setStatistic(stati);
      N += Ni;
      // Reset current risk measure
      risk_[i]->reset(x0,xri);
    }
    if (firstReset_) {
      dualVector0_ = x0->dual().clone();
      firstReset_ = false;
    }
    dualVector0_->zero();
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
             Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
    ConvexCombinationRiskMeasure<Real>::reset(x0,x);
    std::vector<Real> xstat, xstati, vstat, vstati;
    int N = 0, Ni = 0;
    // Must make x and v risk vectors with appropriate statistics
    const RiskVector<Real> &xr = Teuchos::dyn_cast<const RiskVector<Real> >(x);
    const RiskVector<Real> &vr = Teuchos::dyn_cast<const RiskVector<Real> >(v);
    Teuchos::RCP<const Vector<Real> > xptr = xr.getVector();
    Teuchos::RCP<const Vector<Real> > vptr = vr.getVector();
    x0 = Teuchos::rcp_const_cast<Vector<Real> >(xptr);
    v0 = Teuchos::rcp_const_cast<Vector<Real> >(vptr);
    xr.getStatistic(xstat);
    vr.getStatistic(vstat);
    for (uint i = 0; i < size_; ++i) {
      // Build temporary risk vector
      RiskVector<Real> xri(parlist_[i],x0), vri(parlist_[i],v0);
      // Set statistic from original risk vector
      xri.getStatistic(xstati);
      vri.getStatistic(vstati);
      Ni = xstati.size();
      for (int j = 0; j < Ni; ++j) {
        xstati[j] = xstat[N+j];
        vstati[j] = vstat[N+j];
      }
      xri.setStatistic(xstati);
      vri.setStatistic(vstati);
      N += Ni;
      // Reset current risk measure
      risk_[i]->reset(x0,xri,v0,vri);
    }
    if (firstReset_) {
      dualVector0_ = x0->dual().clone();
      firstReset_ = false;
    }
    dualVector0_->zero();
  }

  void update(const Real val, const Real weight) {
    for (uint i = 0; i < size_; ++i) {
      risk_[i]->update(val,weight);
    }
  }

  Real getValue(SampleGenerator<Real> &sampler) {
    Real val(0);
    for (uint i = 0; i < size_; ++i) {
      val += lambda_[i]*risk_[i]->getValue(sampler);
    }
    return val;
  }

  void update(const Real val, const Vector<Real> &g, const Real weight) {
    for (uint i = 0; i < size_; ++i) {
      risk_[i]->update(val,g,weight);
    }
  }

  void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
    g.zero();
    // g does not have the correct dimension if it is a risk vector
    RiskVector<Real> &gr = Teuchos::dyn_cast<RiskVector<Real> >(g);
    std::vector<Real> stat, stati;
    for (uint i = 0; i < size_; ++i) {
      RiskVector<Real> gri(parlist_[i],dualVector0_);
      risk_[i]->getGradient(gri,sampler);
      (gr.getVector())->axpy(lambda_[i],*dualVector0_);
      gri.getStatistic(stati);
      for (uint j = 0; j < stati.size(); ++j) {
        stat.push_back(lambda_[i]*stati[j]);
      }
    }
    gr.setStatistic(stat);
  }

  void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
              const Real weight) {
    for (uint i = 0; i < size_; ++i) {
      risk_[i]->update(val,g,gv,hv,weight);
    }
  }

  void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
    hv.zero();
    // hv does not have the correct dimension if it is a risk vector
    RiskVector<Real> &hvr = Teuchos::dyn_cast<RiskVector<Real> >(hv);
    std::vector<Real> stat, stati;
    for (uint i = 0; i < size_; ++i) {
      RiskVector<Real> hvri(parlist_[i],dualVector0_);
      risk_[i]->getHessVec(hvri,sampler);
      (hvr.getVector())->axpy(lambda_[i],*dualVector0_);
      hvri.getStatistic(stati);
      for (uint j = 0; j < stati.size(); ++j) {
        stat.push_back(lambda_[i]*stati[j]);
      }
    }
    hvr.setStatistic(stat);
  }
};

}

#endif