This file is indexed.

/usr/include/trilinos/ROL_BundleStep.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_BUNDLE_STEP_H
#define ROL_BUNDLE_STEP_H

#include "ROL_Bundle.hpp"
//#include "ROL_Bundle_TT.hpp"
#include "ROL_Types.hpp"
#include "ROL_Step.hpp"
#include "ROL_Vector.hpp"
#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_LineSearch.hpp"

#include "Teuchos_ParameterList.hpp"
#include "Teuchos_RCP.hpp"

/** @ingroup step_group
    \class ROL::BundleStep
    \brief Provides the interface to compute bundle trust-region steps.
*/

namespace ROL {

template <class Real>
class BundleStep : public Step<Real> {
private:
  // Bundle
  Teuchos::RCP<Bundle<Real> >     bundle_;     // Bundle of subgradients and linearization errors
  Teuchos::RCP<LineSearch<Real> > lineSearch_; // Line-search object for nonconvex problems

  // Dual cutting plane solution
  unsigned QPiter_;                        // Number of QP solver iterations
  unsigned QPmaxit_;                       // Maximum number of QP iterations
  Real QPtol_;                             // QP subproblem tolerance

  // Step flag
  int step_flag_;                          // Whether serious or null step

  // Additional storage
  Teuchos::RCP<Vector<Real> > y_;

  // Updated iterate storage
  Real linErrNew_;
  Real valueNew_;

  // Aggregate subgradients, linearizations, and distance measures
  Teuchos::RCP<Vector<Real> > aggSubGradNew_;  // New aggregate subgradient
  Real aggSubGradOldNorm_;                          // Old aggregate subgradient norm
  Real aggLinErrNew_;                               // New aggregate linearization error
  Real aggLinErrOld_;                               // Old aggregate linearization error
  Real aggDistMeasNew_;                             // New aggregate distance measure

  // Algorithmic parameters
  Real T_;
  Real tol_;
  Real m1_;
  Real m2_;
  Real m3_;
  Real nu_;

  // Line-search parameters
  int ls_maxit_;

  bool first_print_;
  bool isConvex_;

  Real ftol_;

public:

  using Step<Real>::initialize;
  using Step<Real>::compute;
  using Step<Real>::update;

  BundleStep(Teuchos::ParameterList &parlist)
    : bundle_(Teuchos::null), lineSearch_(Teuchos::null),
      QPiter_(0), QPmaxit_(0), QPtol_(0), step_flag_(0),
      y_(Teuchos::null), linErrNew_(0), valueNew_(0),
      aggSubGradNew_(Teuchos::null), aggSubGradOldNorm_(0),
      aggLinErrNew_(0), aggLinErrOld_(0), aggDistMeasNew_(0),
      T_(0), tol_(0), m1_(0), m2_(0), m3_(0), nu_(0),
      ls_maxit_(0), first_print_(true), isConvex_(false),
      ftol_(ROL_EPSILON<Real>()) {
    Real zero(0), oem3(1.e-3), oem6(1.e-6), oem8(1.e-8), p1(0.1), p2(0.2), p9(0.9), oe3(1.e3), oe8(1.e8);
    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
    state->searchSize = parlist.sublist("Step").sublist("Bundle").get("Initial Trust-Region Parameter", oe3);
    T_   = parlist.sublist("Step").sublist("Bundle").get("Maximum Trust-Region Parameter",       oe8); 
    tol_ = parlist.sublist("Step").sublist("Bundle").get("Epsilon Solution Tolerance",           oem6);
    m1_  = parlist.sublist("Step").sublist("Bundle").get("Upper Threshold for Serious Step",     p1);
    m2_  = parlist.sublist("Step").sublist("Bundle").get("Lower Threshold for Serious Step",     p2);
    m3_  = parlist.sublist("Step").sublist("Bundle").get("Upper Threshold for Null Step",        p9);
    nu_  = parlist.sublist("Step").sublist("Bundle").get("Tolerance for Trust-Region Parameter", oem3);

    // Initialize bundle
    Real coeff        = parlist.sublist("Step").sublist("Bundle").get("Distance Measure Coefficient",   zero);
    unsigned maxSize  = parlist.sublist("Step").sublist("Bundle").get("Maximum Bundle Size",            200);
    unsigned remSize  = parlist.sublist("Step").sublist("Bundle").get("Removal Size for Bundle Update", 2);
    if ( parlist.sublist("Step").sublist("Bundle").get("Cutting Plane Solver",0) == 1 ) {
      //bundle_ = Teuchos::rcp(new Bundle_TT<Real>(maxSize,coeff,remSize));
      bundle_ = Teuchos::rcp(new Bundle<Real>(maxSize,coeff,remSize));
    }
    else {
      bundle_ = Teuchos::rcp(new Bundle<Real>(maxSize,coeff,remSize));
    }
    isConvex_ = ((coeff == zero) ? true : false);

    // Initialize QP solver 
    QPtol_   = parlist.sublist("Step").sublist("Bundle").get("Cutting Plane Tolerance", oem8);
    QPmaxit_ = parlist.sublist("Step").sublist("Bundle").get("Cutting Plane Iteration Limit", 1000);

    // Initialize Line Search
    ls_maxit_
      = parlist.sublist("Step").sublist("Line Search").get("Maximum Number of Function Evaluations",20);
    if ( !isConvex_ ) {
      lineSearch_ = LineSearchFactory<Real>(parlist);
    }
  }

  void initialize( Vector<Real> &x, const Vector<Real> &g, 
                   Objective<Real> &obj, BoundConstraint<Real> &con, 
                   AlgorithmState<Real> &algo_state ) { 
    // Call default initializer, but maintain current searchSize
    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
    Real searchSize = state->searchSize;
    Step<Real>::initialize(x,x,g,obj,con,algo_state);
    state->searchSize = searchSize;
    // Initialize bundle
    bundle_->initialize(*(state->gradientVec));
    // Initialize storage for updated iterate
    y_ = x.clone();
    // Initialize storage for aggregate subgradients
    aggSubGradNew_     = g.clone();
    aggSubGradOldNorm_ = algo_state.gnorm;
    // Initialize line search
    if ( !isConvex_ ) {
      lineSearch_->initialize(x,x,g,obj,con);
    }
  }

  void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj, 
                BoundConstraint<Real> &con, AlgorithmState<Real> &algo_state ) { 
    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
    first_print_ = false;                     // Print header only on first serious step
    QPiter_ = (step_flag_ ? 0 : QPiter_);     // Reset QPiter only on serious steps
    Real v(0), l(0), u = T_, gd(0);           // Scalar storage
    Real zero(0), two(2), half(0.5);
    bool flag = true;
    while (flag) {
      /*************************************************************/
      /******** Solve Dual Cutting Plane QP Problem ****************/
      /*************************************************************/
      QPiter_ += bundle_->solveDual(state->searchSize,QPmaxit_,QPtol_);  // Solve QP subproblem
      bundle_->aggregate(*aggSubGradNew_,aggLinErrNew_,aggDistMeasNew_); // Compute aggregate info
      algo_state.aggregateGradientNorm = aggSubGradNew_->norm();         // Aggregate subgradient norm
      /*************************************************************/
      /******** Construct Cutting Plane Solution *******************/
      /*************************************************************/
      v = -state->searchSize*std::pow(algo_state.aggregateGradientNorm,two)-aggLinErrNew_; // CP objective value
      s.set(aggSubGradNew_->dual()); s.scale(-state->searchSize);            // CP solution
      algo_state.snorm = state->searchSize*algo_state.aggregateGradientNorm; // Step norm
      /*************************************************************/
      /******** Decide Whether Step is Serious or Null *************/
      /*************************************************************/
      if (std::max(algo_state.aggregateGradientNorm,aggLinErrNew_) <= tol_) {
        // Current iterate is already epsilon optimal!
        s.zero(); algo_state.snorm = zero;
        flag = false;
        step_flag_ = 1;
        algo_state.flag = true;
        break;
      }
      else {
        // Current iterate is not epsilon optimal.
        y_->set(x); y_->plus(s);                       // y is the candidate iterate
        obj.update(*y_,true,algo_state.iter);          // Update objective at y
        valueNew_ = obj.value(*y_,ftol_);              // Compute objective value at y
        algo_state.nfval++;
        obj.gradient(*(state->gradientVec),*y_,ftol_); // Compute objective (sub)gradient at y
        algo_state.ngrad++;
        // Compute new linearization error and distance measure
        gd = s.dot(state->gradientVec->dual());
        linErrNew_ = algo_state.value - (valueNew_ - gd); // Linearization error
        // Determine whether to take a serious or null step
        bool SS1  = (valueNew_-algo_state.value <  m1_*v);
        //bool NS1  = (valueNew_-algo_state.value >= m1_*v);
        bool NS2a = (bundle_->computeAlpha(algo_state.snorm,linErrNew_) <= m3_*aggLinErrOld_);
        bool NS2b = (std::abs(algo_state.value-valueNew_) <= aggSubGradOldNorm_ + aggLinErrOld_);
        if ( isConvex_ ) {
          /************* Convex objective ****************/
          if ( SS1 ) {
            bool SS2 = (gd >= m2_*v || state->searchSize >= T_-nu_);
            if ( SS2 ) { // Serious Step
              step_flag_ = 1;
              flag       = false;
              break;
            }
            else { // Increase trust-region radius
              l = state->searchSize;
              state->searchSize = half*(u+l);
            }
          }
          else {
            if ( NS2a || NS2b ) { // Null step
              s.zero(); algo_state.snorm = zero;
              step_flag_ = 0;
              flag       = false;
              break;
            }
            else { // Decrease trust-region radius
              u = state->searchSize;
              state->searchSize = half*(u+l);
            }
          }
        }
        else {
          /************* Nonconvex objective *************/
          bool NS3 = (gd - bundle_->computeAlpha(algo_state.snorm,linErrNew_) >= m2_*v);
          if ( SS1 ) { // Serious step
            step_flag_ = 1;
            flag       = false;
            break;
          }
          else {
            if ( NS2a || NS2b ) {
              if ( NS3 ) { // Null step
                s.zero();
                step_flag_ = 0;
                flag       = false;
                break;
              }
              else {
                if ( NS2b ) { // Line search
                  Real alpha = zero;
                  int ls_nfval = 0, ls_ngrad = 0;
                  lineSearch_->run(alpha,valueNew_,ls_nfval,ls_ngrad,gd,s,x,obj,con);
                  if ( ls_nfval == ls_maxit_ ) { // Null step
                    s.zero();
                    step_flag_ = 0;
                    flag       = false;
                    break;
                  }
                  else { // Serious step
                    s.scale(alpha);
                    step_flag_ = 1;
                    flag       = false;
                    break;
                  }
                }
                else { // Decrease trust-region radius
                  u = state->searchSize;
                  state->searchSize = half*(u+l);
                }
              }
            }
            else { // Decrease trust-region radius
              u = state->searchSize;
              state->searchSize = half*(u+l);
            }
          }
        }
      }
    } // End While
    /*************************************************************/
    /******** Update Algorithm State *****************************/
    /*************************************************************/
    algo_state.aggregateModelError = aggLinErrNew_;
    aggSubGradOldNorm_ = algo_state.aggregateGradientNorm;
    aggLinErrOld_      = aggLinErrNew_;
  } // End Compute

  void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj, 
               BoundConstraint<Real> &con, AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
    if ( !algo_state.flag ) {
      /*************************************************************/
      /******** Reset Bundle If Maximum Size Reached ***************/
      /*************************************************************/
      bundle_->reset(*aggSubGradNew_,aggLinErrNew_,algo_state.snorm);
      /*************************************************************/
      /******** Update Bundle with Step Information ****************/
      /*************************************************************/
      if ( step_flag_ ) {
        // Serious step was taken
        x.plus(s);                        // Update iterate
        Real valueOld = algo_state.value; // Store previous objective value
        algo_state.value = valueNew_;     // Add new objective value to state
        bundle_->update(step_flag_,valueNew_-valueOld,algo_state.snorm,*(state->gradientVec),s);
      }
      else {
        // Null step was taken
        bundle_->update(step_flag_,linErrNew_,algo_state.snorm,*(state->gradientVec),s);
      }
    }
    /*************************************************************/
    /******** Update Algorithm State *****************************/
    /*************************************************************/
    algo_state.iterateVec->set(x);
    algo_state.gnorm = (state->gradientVec)->norm();
    if ( step_flag_ ) {
      algo_state.iter++;
    }
  } // End Update

  std::string printHeader( void ) const {
    std::stringstream hist;
    hist << "  ";
    hist << std::setw(6) << std::left << "iter";
    hist << std::setw(15) << std::left << "value";
    hist << std::setw(15) << std::left << "gnorm";
    hist << std::setw(15) << std::left << "snorm";
    hist << std::setw(10) << std::left << "#fval";
    hist << std::setw(10) << std::left << "#grad";
    hist << std::setw(15) << std::left << "znorm";
    hist << std::setw(15) << std::left << "alpha";
    hist << std::setw(15) << std::left << "TRparam";
    hist << std::setw(10) << std::left << "QPiter";
    hist << "\n";
    return hist.str();
  }

  std::string printName( void ) const {
    std::stringstream hist;
    hist << "\n" << "Bundle Trust-Region Algorithm \n";
    return hist.str();
  }

  std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
    const Teuchos::RCP<const StepState<Real> > state = Step<Real>::getStepState();
    std::stringstream hist;
    hist << std::scientific << std::setprecision(6);
    if ( algo_state.iter == 0 && first_print_ ) {
      hist << printName();
      if ( print_header ) {
        hist << printHeader();
      }
      hist << "  ";
      hist << std::setw(6) << std::left << algo_state.iter;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << "\n";
    }
    if ( step_flag_ && algo_state.iter > 0 ) {
      if ( print_header ) {
        hist << printHeader();
      }
      else {
        hist << "  ";
        hist << std::setw(6) << std::left << algo_state.iter;
        hist << std::setw(15) << std::left << algo_state.value;
        hist << std::setw(15) << std::left << algo_state.gnorm;
        hist << std::setw(15) << std::left << algo_state.snorm;
        hist << std::setw(10) << std::left << algo_state.nfval;
        hist << std::setw(10) << std::left << algo_state.ngrad;
        hist << std::setw(15) << std::left << algo_state.aggregateGradientNorm;
        hist << std::setw(15) << std::left << algo_state.aggregateModelError;
        hist << std::setw(15) << std::left << state->searchSize;
        hist << std::setw(10) << std::left << QPiter_;
        hist << "\n";
      }
    }
    return hist.str();
  };

}; // class BundleStep

} // namespace ROL

#endif