/usr/include/trilinos/ROL_BundleStep.hpp is in libtrilinos-rol-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_BUNDLE_STEP_H
#define ROL_BUNDLE_STEP_H
#include "ROL_Bundle.hpp"
//#include "ROL_Bundle_TT.hpp"
#include "ROL_Types.hpp"
#include "ROL_Step.hpp"
#include "ROL_Vector.hpp"
#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_LineSearch.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_RCP.hpp"
/** @ingroup step_group
\class ROL::BundleStep
\brief Provides the interface to compute bundle trust-region steps.
*/
namespace ROL {
template <class Real>
class BundleStep : public Step<Real> {
private:
// Bundle
Teuchos::RCP<Bundle<Real> > bundle_; // Bundle of subgradients and linearization errors
Teuchos::RCP<LineSearch<Real> > lineSearch_; // Line-search object for nonconvex problems
// Dual cutting plane solution
unsigned QPiter_; // Number of QP solver iterations
unsigned QPmaxit_; // Maximum number of QP iterations
Real QPtol_; // QP subproblem tolerance
// Step flag
int step_flag_; // Whether serious or null step
// Additional storage
Teuchos::RCP<Vector<Real> > y_;
// Updated iterate storage
Real linErrNew_;
Real valueNew_;
// Aggregate subgradients, linearizations, and distance measures
Teuchos::RCP<Vector<Real> > aggSubGradNew_; // New aggregate subgradient
Real aggSubGradOldNorm_; // Old aggregate subgradient norm
Real aggLinErrNew_; // New aggregate linearization error
Real aggLinErrOld_; // Old aggregate linearization error
Real aggDistMeasNew_; // New aggregate distance measure
// Algorithmic parameters
Real T_;
Real tol_;
Real m1_;
Real m2_;
Real m3_;
Real nu_;
// Line-search parameters
int ls_maxit_;
bool first_print_;
bool isConvex_;
Real ftol_;
public:
using Step<Real>::initialize;
using Step<Real>::compute;
using Step<Real>::update;
BundleStep(Teuchos::ParameterList &parlist)
: bundle_(Teuchos::null), lineSearch_(Teuchos::null),
QPiter_(0), QPmaxit_(0), QPtol_(0), step_flag_(0),
y_(Teuchos::null), linErrNew_(0), valueNew_(0),
aggSubGradNew_(Teuchos::null), aggSubGradOldNorm_(0),
aggLinErrNew_(0), aggLinErrOld_(0), aggDistMeasNew_(0),
T_(0), tol_(0), m1_(0), m2_(0), m3_(0), nu_(0),
ls_maxit_(0), first_print_(true), isConvex_(false),
ftol_(ROL_EPSILON<Real>()) {
Real zero(0), oem3(1.e-3), oem6(1.e-6), oem8(1.e-8), p1(0.1), p2(0.2), p9(0.9), oe3(1.e3), oe8(1.e8);
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
state->searchSize = parlist.sublist("Step").sublist("Bundle").get("Initial Trust-Region Parameter", oe3);
T_ = parlist.sublist("Step").sublist("Bundle").get("Maximum Trust-Region Parameter", oe8);
tol_ = parlist.sublist("Step").sublist("Bundle").get("Epsilon Solution Tolerance", oem6);
m1_ = parlist.sublist("Step").sublist("Bundle").get("Upper Threshold for Serious Step", p1);
m2_ = parlist.sublist("Step").sublist("Bundle").get("Lower Threshold for Serious Step", p2);
m3_ = parlist.sublist("Step").sublist("Bundle").get("Upper Threshold for Null Step", p9);
nu_ = parlist.sublist("Step").sublist("Bundle").get("Tolerance for Trust-Region Parameter", oem3);
// Initialize bundle
Real coeff = parlist.sublist("Step").sublist("Bundle").get("Distance Measure Coefficient", zero);
unsigned maxSize = parlist.sublist("Step").sublist("Bundle").get("Maximum Bundle Size", 200);
unsigned remSize = parlist.sublist("Step").sublist("Bundle").get("Removal Size for Bundle Update", 2);
if ( parlist.sublist("Step").sublist("Bundle").get("Cutting Plane Solver",0) == 1 ) {
//bundle_ = Teuchos::rcp(new Bundle_TT<Real>(maxSize,coeff,remSize));
bundle_ = Teuchos::rcp(new Bundle<Real>(maxSize,coeff,remSize));
}
else {
bundle_ = Teuchos::rcp(new Bundle<Real>(maxSize,coeff,remSize));
}
isConvex_ = ((coeff == zero) ? true : false);
// Initialize QP solver
QPtol_ = parlist.sublist("Step").sublist("Bundle").get("Cutting Plane Tolerance", oem8);
QPmaxit_ = parlist.sublist("Step").sublist("Bundle").get("Cutting Plane Iteration Limit", 1000);
// Initialize Line Search
ls_maxit_
= parlist.sublist("Step").sublist("Line Search").get("Maximum Number of Function Evaluations",20);
if ( !isConvex_ ) {
lineSearch_ = LineSearchFactory<Real>(parlist);
}
}
void initialize( Vector<Real> &x, const Vector<Real> &g,
Objective<Real> &obj, BoundConstraint<Real> &con,
AlgorithmState<Real> &algo_state ) {
// Call default initializer, but maintain current searchSize
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
Real searchSize = state->searchSize;
Step<Real>::initialize(x,x,g,obj,con,algo_state);
state->searchSize = searchSize;
// Initialize bundle
bundle_->initialize(*(state->gradientVec));
// Initialize storage for updated iterate
y_ = x.clone();
// Initialize storage for aggregate subgradients
aggSubGradNew_ = g.clone();
aggSubGradOldNorm_ = algo_state.gnorm;
// Initialize line search
if ( !isConvex_ ) {
lineSearch_->initialize(x,x,g,obj,con);
}
}
void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj,
BoundConstraint<Real> &con, AlgorithmState<Real> &algo_state ) {
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
first_print_ = false; // Print header only on first serious step
QPiter_ = (step_flag_ ? 0 : QPiter_); // Reset QPiter only on serious steps
Real v(0), l(0), u = T_, gd(0); // Scalar storage
Real zero(0), two(2), half(0.5);
bool flag = true;
while (flag) {
/*************************************************************/
/******** Solve Dual Cutting Plane QP Problem ****************/
/*************************************************************/
QPiter_ += bundle_->solveDual(state->searchSize,QPmaxit_,QPtol_); // Solve QP subproblem
bundle_->aggregate(*aggSubGradNew_,aggLinErrNew_,aggDistMeasNew_); // Compute aggregate info
algo_state.aggregateGradientNorm = aggSubGradNew_->norm(); // Aggregate subgradient norm
/*************************************************************/
/******** Construct Cutting Plane Solution *******************/
/*************************************************************/
v = -state->searchSize*std::pow(algo_state.aggregateGradientNorm,two)-aggLinErrNew_; // CP objective value
s.set(aggSubGradNew_->dual()); s.scale(-state->searchSize); // CP solution
algo_state.snorm = state->searchSize*algo_state.aggregateGradientNorm; // Step norm
/*************************************************************/
/******** Decide Whether Step is Serious or Null *************/
/*************************************************************/
if (std::max(algo_state.aggregateGradientNorm,aggLinErrNew_) <= tol_) {
// Current iterate is already epsilon optimal!
s.zero(); algo_state.snorm = zero;
flag = false;
step_flag_ = 1;
algo_state.flag = true;
break;
}
else {
// Current iterate is not epsilon optimal.
y_->set(x); y_->plus(s); // y is the candidate iterate
obj.update(*y_,true,algo_state.iter); // Update objective at y
valueNew_ = obj.value(*y_,ftol_); // Compute objective value at y
algo_state.nfval++;
obj.gradient(*(state->gradientVec),*y_,ftol_); // Compute objective (sub)gradient at y
algo_state.ngrad++;
// Compute new linearization error and distance measure
gd = s.dot(state->gradientVec->dual());
linErrNew_ = algo_state.value - (valueNew_ - gd); // Linearization error
// Determine whether to take a serious or null step
bool SS1 = (valueNew_-algo_state.value < m1_*v);
//bool NS1 = (valueNew_-algo_state.value >= m1_*v);
bool NS2a = (bundle_->computeAlpha(algo_state.snorm,linErrNew_) <= m3_*aggLinErrOld_);
bool NS2b = (std::abs(algo_state.value-valueNew_) <= aggSubGradOldNorm_ + aggLinErrOld_);
if ( isConvex_ ) {
/************* Convex objective ****************/
if ( SS1 ) {
bool SS2 = (gd >= m2_*v || state->searchSize >= T_-nu_);
if ( SS2 ) { // Serious Step
step_flag_ = 1;
flag = false;
break;
}
else { // Increase trust-region radius
l = state->searchSize;
state->searchSize = half*(u+l);
}
}
else {
if ( NS2a || NS2b ) { // Null step
s.zero(); algo_state.snorm = zero;
step_flag_ = 0;
flag = false;
break;
}
else { // Decrease trust-region radius
u = state->searchSize;
state->searchSize = half*(u+l);
}
}
}
else {
/************* Nonconvex objective *************/
bool NS3 = (gd - bundle_->computeAlpha(algo_state.snorm,linErrNew_) >= m2_*v);
if ( SS1 ) { // Serious step
step_flag_ = 1;
flag = false;
break;
}
else {
if ( NS2a || NS2b ) {
if ( NS3 ) { // Null step
s.zero();
step_flag_ = 0;
flag = false;
break;
}
else {
if ( NS2b ) { // Line search
Real alpha = zero;
int ls_nfval = 0, ls_ngrad = 0;
lineSearch_->run(alpha,valueNew_,ls_nfval,ls_ngrad,gd,s,x,obj,con);
if ( ls_nfval == ls_maxit_ ) { // Null step
s.zero();
step_flag_ = 0;
flag = false;
break;
}
else { // Serious step
s.scale(alpha);
step_flag_ = 1;
flag = false;
break;
}
}
else { // Decrease trust-region radius
u = state->searchSize;
state->searchSize = half*(u+l);
}
}
}
else { // Decrease trust-region radius
u = state->searchSize;
state->searchSize = half*(u+l);
}
}
}
}
} // End While
/*************************************************************/
/******** Update Algorithm State *****************************/
/*************************************************************/
algo_state.aggregateModelError = aggLinErrNew_;
aggSubGradOldNorm_ = algo_state.aggregateGradientNorm;
aggLinErrOld_ = aggLinErrNew_;
} // End Compute
void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj,
BoundConstraint<Real> &con, AlgorithmState<Real> &algo_state ) {
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
if ( !algo_state.flag ) {
/*************************************************************/
/******** Reset Bundle If Maximum Size Reached ***************/
/*************************************************************/
bundle_->reset(*aggSubGradNew_,aggLinErrNew_,algo_state.snorm);
/*************************************************************/
/******** Update Bundle with Step Information ****************/
/*************************************************************/
if ( step_flag_ ) {
// Serious step was taken
x.plus(s); // Update iterate
Real valueOld = algo_state.value; // Store previous objective value
algo_state.value = valueNew_; // Add new objective value to state
bundle_->update(step_flag_,valueNew_-valueOld,algo_state.snorm,*(state->gradientVec),s);
}
else {
// Null step was taken
bundle_->update(step_flag_,linErrNew_,algo_state.snorm,*(state->gradientVec),s);
}
}
/*************************************************************/
/******** Update Algorithm State *****************************/
/*************************************************************/
algo_state.iterateVec->set(x);
algo_state.gnorm = (state->gradientVec)->norm();
if ( step_flag_ ) {
algo_state.iter++;
}
} // End Update
std::string printHeader( void ) const {
std::stringstream hist;
hist << " ";
hist << std::setw(6) << std::left << "iter";
hist << std::setw(15) << std::left << "value";
hist << std::setw(15) << std::left << "gnorm";
hist << std::setw(15) << std::left << "snorm";
hist << std::setw(10) << std::left << "#fval";
hist << std::setw(10) << std::left << "#grad";
hist << std::setw(15) << std::left << "znorm";
hist << std::setw(15) << std::left << "alpha";
hist << std::setw(15) << std::left << "TRparam";
hist << std::setw(10) << std::left << "QPiter";
hist << "\n";
return hist.str();
}
std::string printName( void ) const {
std::stringstream hist;
hist << "\n" << "Bundle Trust-Region Algorithm \n";
return hist.str();
}
std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
const Teuchos::RCP<const StepState<Real> > state = Step<Real>::getStepState();
std::stringstream hist;
hist << std::scientific << std::setprecision(6);
if ( algo_state.iter == 0 && first_print_ ) {
hist << printName();
if ( print_header ) {
hist << printHeader();
}
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << "\n";
}
if ( step_flag_ && algo_state.iter > 0 ) {
if ( print_header ) {
hist << printHeader();
}
else {
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << std::setw(15) << std::left << algo_state.snorm;
hist << std::setw(10) << std::left << algo_state.nfval;
hist << std::setw(10) << std::left << algo_state.ngrad;
hist << std::setw(15) << std::left << algo_state.aggregateGradientNorm;
hist << std::setw(15) << std::left << algo_state.aggregateModelError;
hist << std::setw(15) << std::left << state->searchSize;
hist << std::setw(10) << std::left << QPiter_;
hist << "\n";
}
}
return hist.str();
};
}; // class BundleStep
} // namespace ROL
#endif
|