/usr/include/trilinos/ROL_BoundInequalityConstraint.hpp is in libtrilinos-rol-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_BOUND_INEQUALITY_CONSTRAINT_H
#define ROL_BOUND_INEQUALITY_CONSTRAINT_H
#include "ROL_InequalityConstraint.hpp"
#include "ROL_LowerBoundInequalityConstraint.hpp"
#include "ROL_UpperBoundInequalityConstraint.hpp"
/** @ingroup func_group
\class ROL::BoundInequalityConstraint
\brief Provides an implementation for bound inequality constraints.
*/
namespace ROL {
template <class Real>
class BoundInequalityConstraint : public InequalityConstraint<Real> {
private:
Teuchos::RCP<InequalityConstraint<Real> > lo_;
Teuchos::RCP<InequalityConstraint<Real> > up_;
Teuchos::RCP<Vector<Real> > tmp_;
public:
BoundInequalityConstraint(BoundConstraint<Real> &bnd, const Vector<Real> &x) {
lo_ = Teuchos::rcp(new LowerBoundInequalityConstraint<Real>(bnd,x));
up_ = Teuchos::rcp(new UpperBoundInequalityConstraint<Real>(bnd,x));
tmp_ = x.clone();
}
BoundInequalityConstraint(const Vector<Real> &lo, const Vector<Real> &up) {
lo_ = Teuchos::rcp(new LowerBoundInequalityConstraint<Real>(lo));
up_ = Teuchos::rcp(new UpperBoundInequalityConstraint<Real>(up));
tmp_ = lo.clone();
}
void value(Vector<Real> &c, const Vector<Real> &x, Real &tol) {
Vector<Real> &c0 = *(Teuchos::dyn_cast<PartitionedVector<Real> >(c).get(0));
Vector<Real> &c1 = *(Teuchos::dyn_cast<PartitionedVector<Real> >(c).get(1));
lo_->value(c0,x,tol);
up_->value(c1,x,tol);
}
void applyJacobian(Vector<Real> &jv, const Vector<Real> &v, const Vector<Real> &x, Real &tol) {
Vector<Real> &jv0 = *(Teuchos::dyn_cast<PartitionedVector<Real> >(jv).get(0));
Vector<Real> &jv1 = *(Teuchos::dyn_cast<PartitionedVector<Real> >(jv).get(1));
lo_->applyJacobian(jv0,v,x,tol);
up_->applyJacobian(jv1,v,x,tol);
}
void applyAdjointJacobian(Vector<Real> &ajv, const Vector<Real> &v, const Vector<Real> &x, Real &tol) {
const Vector<Real> &v0 = *(Teuchos::dyn_cast<const PartitionedVector<Real> >(v).get(0));
const Vector<Real> &v1 = *(Teuchos::dyn_cast<const PartitionedVector<Real> >(v).get(1));
lo_->applyAdjointJacobian(ajv,v0,x,tol);
up_->applyAdjointJacobian(*tmp_,v1,x,tol);
ajv.plus(*tmp_);
}
void applyAdjointHessian(Vector<Real> &ahuv, const Vector<Real> &u, const Vector<Real> &v,
const Vector<Real> &x, Real &tol) {
ahuv.zero();
}
};
}
#endif
|