/usr/include/trilinos/ROL_BoundConstraint.hpp is in libtrilinos-rol-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_BOUND_CONSTRAINT_H
#define ROL_BOUND_CONSTRAINT_H
#include "ROL_Vector.hpp"
#include "ROL_Types.hpp"
#include <iostream>
/** @ingroup func_group
\class ROL::BoundConstraint
\brief Provides the interface to apply upper and lower bound constraints.
ROL's bound constraint class is to designed to handle point wise bound
constraints on optimization variables. That is, let \f$\mathcal{X}\f$
be a Banach space of functions from \f$\Xi\f$ into \f$\mathbb{R}\f$
(for example, \f$\Xi\subset\mathbb{R}^d\f$ for some positive integer \f$d\f$
and \f$\mathcal{X}=L^2(\Xi)\f$ or \f$\Xi = \{1,\ldots,n\}\f$ and
\f$\mathcal{X}=\mathbb{R}^n\f$). For any \f$x\in\mathcal{X}\f$, we consider
bounds of the form
\f[
a(\xi) \le x(\xi) \le b(\xi) \quad \text{for almost every }\xi\in\Xi.
\f]
Here, \f$a(\xi)\le b(\xi)\f$ for almost every \f$\xi\in\Xi\f$ and \f$a,b\in \mathcal{X}\f$.
*/
namespace ROL {
template <class Real>
class BoundConstraint {
private:
int dim_;
const Teuchos::RCP<Vector<Real> > x_lo_;
const Teuchos::RCP<Vector<Real> > x_up_;
const Real scale_;
Teuchos::RCP<Vector<Real> > mask_;
bool activated_; ///< Flag that determines whether or not the constraints are being used.
Real min_diff_;
Elementwise::ReductionMin<Real> minimum_;
class Active : public Elementwise::BinaryFunction<Real> {
public:
Active(Real offset) : offset_(offset) {}
Real apply( const Real &x, const Real &y ) const {
return ((y <= offset_) ? 0 : x);
}
private:
Real offset_;
};
class UpperBinding : public Elementwise::BinaryFunction<Real> {
public:
UpperBinding(Real offset) : offset_(offset) {}
Real apply( const Real &x, const Real &y ) const {
return ((y < 0 && x <= offset_) ? 0 : 1);
}
private:
Real offset_;
};
class LowerBinding : public Elementwise::BinaryFunction<Real> {
public:
LowerBinding(Real offset) : offset_(offset) {}
Real apply( const Real &x, const Real &y ) const {
return ((y > 0 && x <= offset_) ? 0 : 1);
}
private:
Real offset_;
};
class PruneBinding : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return ((y == 1) ? x : 0);
}
} prune_;
public:
virtual ~BoundConstraint() {}
BoundConstraint(void)
: x_lo_(Teuchos::null), x_up_(Teuchos::null), scale_(1),
mask_(Teuchos::null), activated_(false), min_diff_(0) {}
BoundConstraint( const Vector<Real> &x ) : x_lo_(x.clone()),
x_up_(x.clone()), scale_(1),
mask_(Teuchos::null), activated_(false), min_diff_(0) {
x_lo_->applyUnary(Elementwise::Fill<Real>(ROL_NINF<Real>()));
x_up_->applyUnary(Elementwise::Fill<Real>(ROL_INF<Real>()));
}
/** \brief Default constructor.
The default constructor automatically turns the constraints on.
*/
BoundConstraint(const Teuchos::RCP<Vector<Real> > &x_lo,
const Teuchos::RCP<Vector<Real> > &x_up,
const Real scale = 1)
: x_lo_(x_lo), x_up_(x_up), scale_(scale), activated_(true) {
Real half(0.5), one(1);
mask_ = x_lo_->clone();
// Compute difference between upper and lower bounds
mask_->set(*x_up_);
mask_->axpy(-one,*x_lo_);
// Compute minimum difference
min_diff_ = mask_->reduce(minimum_);
min_diff_ *= half;
}
/** \brief Update bounds.
The update function allows the user to update the bounds at each new iterations.
@param[in] x is the optimization variable.
@param[in] flag is set to true if control is changed.
@param[in] iter is the outer algorithm iterations count.
*/
virtual void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {}
/** \brief Project optimization variables onto the bounds.
This function implements the projection of \f$x\f$ onto the bounds, i.e.,
\f[
(P_{[a,b]}(x))(\xi) = \min\{b(\xi),\max\{a(\xi),x(\xi)\}\} \quad \text{for almost every }\xi\in\Xi.
\f]
@param[in,out] x is the optimization variable.
*/
virtual void project( Vector<Real> &x ) {
struct Lesser : public Elementwise::BinaryFunction<Real> {
Real apply(const Real &xc, const Real &yc) const { return xc<yc ? xc : yc; }
} lesser;
struct Greater : public Elementwise::BinaryFunction<Real> {
Real apply(const Real &xc, const Real &yc) const { return xc>yc ? xc : yc; }
} greater;
x.applyBinary(lesser, *x_up_); // Set x to the elementwise minimum of x and x_up_
x.applyBinary(greater,*x_lo_); // Set x to the elementwise maximum of x and x_lo_
}
/** \brief Set variables to zero if they correspond to the upper \f$\epsilon\f$-active set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}^+_\epsilon(x)\f$. Here,
the upper \f$\epsilon\f$-active set is defined as
\f[
\mathcal{A}^+_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = b(\xi)-\epsilon\,\}.
\f]
@param[out] v is the variable to be pruned.
@param[in] x is the current optimization variable.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
virtual void pruneUpperActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
Real one(1), epsn(std::min(scale_*eps,min_diff_));
mask_->set(*x_up_);
mask_->axpy(-one,x);
Active op(epsn);
v.applyBinary(op,*mask_);
}
/** \brief Set variables to zero if they correspond to the upper \f$\epsilon\f$-binding set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}^+_\epsilon(x)\f$. Here,
the upper \f$\epsilon\f$-binding set is defined as
\f[
\mathcal{B}^+_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = b(\xi)-\epsilon,\;
g(\xi) < 0 \,\}.
\f]
@param[out] v is the variable to be pruned.
@param[in] g is the negative search direction.
@param[in] x is the current optimization variable.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
virtual void pruneUpperActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {
Real one(1), epsn(std::min(scale_*eps,min_diff_));
mask_->set(*x_up_);
mask_->axpy(-one,x);
UpperBinding op(epsn);
mask_->applyBinary(op,g);
v.applyBinary(prune_,*mask_);
}
/** \brief Set variables to zero if they correspond to the lower \f$\epsilon\f$-active set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}^-_\epsilon(x)\f$. Here,
the lower \f$\epsilon\f$-active set is defined as
\f[
\mathcal{A}^-_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = a(\xi)+\epsilon\,\}.
\f]
@param[out] v is the variable to be pruned.
@param[in] x is the current optimization variable.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
virtual void pruneLowerActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
Real one(1), epsn(std::min(scale_*eps,min_diff_));
mask_->set(x);
mask_->axpy(-one,*x_lo_);
Active op(epsn);
v.applyBinary(op,*mask_);
}
/** \brief Set variables to zero if they correspond to the lower \f$\epsilon\f$-binding set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}^-_\epsilon(x)\f$. Here,
the lower \f$\epsilon\f$-binding set is defined as
\f[
\mathcal{B}^-_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = a(\xi)+\epsilon,\;
g(\xi) > 0 \,\}.
\f]
@param[out] v is the variable to be pruned.
@param[in] g is the negative search direction.
@param[in] x is the current optimization variable.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
virtual void pruneLowerActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {
Real one(1), epsn(std::min(scale_*eps,min_diff_));
mask_->set(x);
mask_->axpy(-one,*x_lo_);
LowerBinding op(epsn);
mask_->applyBinary(op,g);
v.applyBinary(prune_,*mask_);
}
/** \brief Return the ref count pointer to the lower bound vector */
virtual const Teuchos::RCP<const Vector<Real> > getLowerVectorRCP( void ) const {
return x_lo_;
}
/** \brief Return the ref count pointer to the upper bound vector */
virtual const Teuchos::RCP<const Vector<Real> > getUpperVectorRCP( void ) const {
return x_up_;
}
/** \brief Return the ref count pointer to the lower bound vector */
virtual const Teuchos::RCP<Vector<Real> > getLowerVectorRCP( void ) {
return x_lo_;
}
/** \brief Return the ref count pointer to the upper bound vector */
virtual const Teuchos::RCP<Vector<Real> > getUpperVectorRCP( void ) {
return x_up_;
}
/** \brief Set the input vector to the upper bound.
This function sets the input vector \f$u\f$ to the upper bound \f$b\f$.
@param[out] u is the vector to be set to the upper bound.
*/
virtual void setVectorToUpperBound( Vector<Real> &u ) {
if( x_up_ == Teuchos::null ) {
u.applyUnary(Elementwise::Fill<Real>(ROL_INF<Real>()));
}
else {
u.set(*x_up_);
}
}
/** \brief Set the input vector to the lower bound.
This function sets the input vector \f$l\f$ to the lower bound \f$a\f$.
@param[out] l is the vector to be set to the lower bound.
*/
virtual void setVectorToLowerBound( Vector<Real> &l ) {
if( x_lo_ == Teuchos::null ) {
l.applyUnary(Elementwise::Fill<Real>(ROL_NINF<Real>()));
}
else {
l.set(*x_lo_);
}
}
/** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-active set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}_\epsilon(x)\f$. Here,
the \f$\epsilon\f$-active set is defined as
\f[
\mathcal{A}_\epsilon(x) = \mathcal{A}^+_\epsilon(x)\cap\mathcal{A}^-_\epsilon(x).
\f]
@param[out] v is the variable to be pruned.
@param[in] x is the current optimization variable.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
virtual void pruneActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
pruneUpperActive(v,x,eps);
pruneLowerActive(v,x,eps);
}
/** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-binding set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}_\epsilon(x)\f$. Here,
the \f$\epsilon\f$-binding set is defined as
\f[
\mathcal{B}^+_\epsilon(x) = \mathcal{B}^+_\epsilon(x)\cap\mathcal{B}^-_\epsilon(x).
\f]
@param[out] v is the variable to be pruned.
@param[in] g is the negative search direction.
@param[in] x is the current optimization variable.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
virtual void pruneActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {
pruneUpperActive(v,g,x,eps);
pruneLowerActive(v,g,x,eps);
}
/** \brief Check if the vector, v, is feasible.
This function returns true if \f$v = P_{[a,b]}(v)\f$.
@param[in] v is the vector to be checked.
*/
virtual bool isFeasible( const Vector<Real> &v ) {
bool flag = true;
Real one(1);
if ( activated_ ) {
mask_->set(*x_up_);
mask_->axpy(-one,v);
Real uminusv = mask_->reduce(minimum_);
mask_->set(v);
mask_->axpy(-one,*x_lo_);
Real vminusl = mask_->reduce(minimum_);
flag = (((uminusv < 0) || (vminusl<0)) ? false : true);
}
return flag;
}
/** \brief Turn on bounds.
This function turns the bounds on.
*/
void activate(void) { activated_ = true; }
/** \brief Turn off bounds.
This function turns the bounds off.
*/
void deactivate(void) { activated_ = false; }
/** \brief Check if bounds are on.
This function returns true if the bounds are turned on.
*/
bool isActivated(void) { return activated_; }
/** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-inactive set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\Xi\setminus\mathcal{A}_\epsilon(x)\f$. Here,
@param[out] v is the variable to be pruned.
@param[in] x is the current optimization variable.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
void pruneInactive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
Real one(1);
Teuchos::RCP<Vector<Real> > tmp = v.clone();
tmp->set(v);
pruneActive(*tmp,x,eps);
v.axpy(-one,*tmp);
}
void pruneLowerInactive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
Real one(1);
Teuchos::RCP<Vector<Real> > tmp = v.clone();
tmp->set(v);
pruneLowerActive(*tmp,x,eps);
v.axpy(-one,*tmp);
}
void pruneUpperInactive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
Real one(1);
Teuchos::RCP<Vector<Real> > tmp = v.clone();
tmp->set(v);
pruneUpperActive(*tmp,x,eps);
v.axpy(-one,*tmp);
}
/** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-nonbinding set.
This function sets \f$v(\xi)=0\f$ if \f$\xi\in\Xi\setminus\mathcal{B}_\epsilon(x)\f$.
@param[out] v is the variable to be pruned.
@param[in] x is the current optimization variable.
@param[in] g is the negative search direction.
@param[in] eps is the active-set tolerance \f$\epsilon\f$.
*/
void pruneInactive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {
Real one(1);
Teuchos::RCP<Vector<Real> > tmp = v.clone();
tmp->set(v);
pruneActive(*tmp,g,x,eps);
v.axpy(-one,*tmp);
}
void pruneLowerInactive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {
Real one(1);
Teuchos::RCP<Vector<Real> > tmp = v.clone();
tmp->set(v);
pruneLowerActive(*tmp,g,x,eps);
v.axpy(-one,*tmp);
}
void pruneUpperInactive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {
Real one(1);
Teuchos::RCP<Vector<Real> > tmp = v.clone();
tmp->set(v);
pruneUpperActive(*tmp,g,x,eps);
v.axpy(-one,*tmp);
}
/** \brief Compute projected gradient.
This function projects the gradient \f$g\f$ onto the tangent cone.
@param[in,out] g is the gradient of the objective function at x.
@param[in] x is the optimization variable
*/
void computeProjectedGradient( Vector<Real> &g, const Vector<Real> &x ) {
Teuchos::RCP<Vector<Real> > tmp = g.clone();
tmp->set(g);
pruneActive(g,*tmp,x);
}
/** \brief Compute projected step.
This function computes the projected step \f$P_{[a,b]}(x+v) - x\f$.
@param[in,out] v is the step variable.
@param[in] x is the optimization variable.
*/
void computeProjectedStep( Vector<Real> &v, const Vector<Real> &x ) {
Real one(1);
v.plus(x);
project(v);
v.axpy(-one,x);
}
}; // class BoundConstraint
} // namespace ROL
#endif
|