This file is indexed.

/usr/include/trilinos/Piro_SteadyStateSolver_Def.hpp is in libtrilinos-piro-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// @HEADER
// ************************************************************************
//
//        Piro: Strategy package for embedded analysis capabilitites
//                  Copyright (2010) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Andy Salinger (agsalin@sandia.gov), Sandia
// National Laboratories.
//
// ************************************************************************
// @HEADER

#ifndef PIRO_STEADYSTATESOLVER_DEF_HPP
#define PIRO_STEADYSTATESOLVER_DEF_HPP

#include "Piro_SteadyStateSolver.hpp"

#include "Thyra_ModelEvaluatorHelpers.hpp"

#include "Thyra_DefaultScaledAdjointLinearOp.hpp"
#include "Thyra_DefaultAddedLinearOp.hpp"
#include "Thyra_DefaultMultipliedLinearOp.hpp"
#include "Thyra_DefaultInverseLinearOp.hpp"
#include "Thyra_DefaultIdentityLinearOp.hpp"
#include "Thyra_DefaultZeroLinearOp.hpp"
#include "Thyra_MultiVectorStdOps.hpp"
#include "Thyra_VectorStdOps.hpp"

#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_TestForException.hpp"
#include "Teuchos_Array.hpp"
#include "Teuchos_Tuple.hpp"

#include "Teuchos_FancyOStream.hpp"
#include <stdexcept>
#include <cstddef>
#include <ostream>

template <typename Scalar>
Piro::SteadyStateSolver<Scalar>::
SteadyStateSolver(const Teuchos::RCP<const Thyra::ModelEvaluator<Scalar> > &model) :
  model_(model),
  num_p_(model->Np()),
  num_g_(model->Ng())
{}

template <typename Scalar>
Piro::SteadyStateSolver<Scalar>::
SteadyStateSolver(
    const Teuchos::RCP<const Thyra::ModelEvaluator<Scalar> > &model,
    int numParameters) :
  model_(model),
  num_p_(numParameters),
  num_g_(model->Ng())
{}

template<typename Scalar>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::SteadyStateSolver<Scalar>::get_p_space(int l) const
{
  TEUCHOS_TEST_FOR_EXCEPTION(l >= num_p_ || l < 0, Teuchos::Exceptions::InvalidParameter,
                     std::endl <<
                     "Invalid parameter index l = " <<
                     l << std::endl);
  return model_->get_p_space(l);
}

template<typename Scalar>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::SteadyStateSolver<Scalar>::get_g_space(int j) const
{
  TEUCHOS_TEST_FOR_EXCEPTION(j > num_g_ || j < 0, Teuchos::Exceptions::InvalidParameter,
                     std::endl <<
                     "Invalid response index j = " <<
                     j << std::endl);

  if (j < num_g_) {
    return model_->get_g_space(j);
  } else {
    // j == num_g_, corresponding to the state by convention
    return model_->get_x_space();
  }
}

template <typename Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::SteadyStateSolver<Scalar>::createInArgsImpl() const
{
  Thyra::ModelEvaluatorBase::InArgsSetup<Scalar> result;
  result.setModelEvalDescription(this->description());
  result.set_Np(num_p_);
  return result;
}

template<typename Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::SteadyStateSolver<Scalar>::getNominalValues() const
{
  Thyra::ModelEvaluatorBase::InArgs<Scalar> result = this->createInArgsImpl();
  result.setArgs(
      model_->getNominalValues(),
      /* ignoreUnsupported = */ true,
      /* cloneObjects = */ false);
  return result;
}

template <typename Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar> Piro::SteadyStateSolver<Scalar>::createInArgs() const
{
  return this->createInArgsImpl();
}

template <typename Scalar>
Thyra::ModelEvaluatorBase::OutArgs<Scalar> Piro::SteadyStateSolver<Scalar>::createOutArgsImpl() const
{
  Thyra::ModelEvaluatorBase::OutArgsSetup<Scalar> result;
  result.setModelEvalDescription(this->description());

  // One additional response slot for the solution vector
  result.set_Np_Ng(num_p_, num_g_ + 1);

  const Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model_->createOutArgs();

  // Sensitivity support (Forward approach only)
  // Jacobian solver required for all sensitivities
  if (modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_W)) {
    for (int l = 0; l < num_p_; ++l) {
      // Solution sensitivities: DxDp(l)
      // DfDp(l) required
      const Thyra::ModelEvaluatorBase::DerivativeSupport dfdp_support =
        modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DfDp, l);
      const bool dxdp_linOpSupport =
        dfdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
      const bool dxdp_mvJacSupport =
        dfdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
      {
        Thyra::ModelEvaluatorBase::DerivativeSupport dxdp_support;
        if (dxdp_linOpSupport) {
          dxdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
        }
        if (dxdp_mvJacSupport) {
          dxdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
        }
        result.setSupports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, num_g_, l, dxdp_support);
      }

      // Response sensitivities: DgDp(j, l)
      // DxDp(l) required
      if (dxdp_linOpSupport || dxdp_mvJacSupport) {
        for (int j = 0; j < num_g_; ++j) {
          // DgDx(j) required
          const Thyra::ModelEvaluatorBase::DerivativeSupport dgdx_support =
            modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDx, j);
          const bool dgdx_linOpSupport =
            dgdx_support.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
          const bool dgdx_mvGradSupport =
            dgdx_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM);
          if (dgdx_linOpSupport || dgdx_mvGradSupport) {
            // Dgdp(j, l) required
            const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
              modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
            Thyra::ModelEvaluatorBase::DerivativeSupport total_dgdp_support;
            if (dgdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP) &&
                dgdx_linOpSupport && dxdp_linOpSupport) {
              total_dgdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
            }
            if (dxdp_mvJacSupport) {
              if (dgdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
                total_dgdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
              }
              if (dgdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM) &&
                  dgdx_mvGradSupport) {
                total_dgdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM);
              }
            }
            result.setSupports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l, total_dgdp_support);
          }
        }
      }
    }
  }

  return result;
}

template <typename Scalar>
const Thyra::ModelEvaluator<Scalar> &
Piro::SteadyStateSolver<Scalar>::getModel() const
{
  return *model_;
}

template <typename Scalar>
int
Piro::SteadyStateSolver<Scalar>::num_p() const
{
  return num_p_;
}

template <typename Scalar>
int
Piro::SteadyStateSolver<Scalar>::num_g() const
{
  return num_g_;
}

template <typename Scalar>
void Piro::SteadyStateSolver<Scalar>::evalConvergedModel(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& modelInArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
  using Teuchos::RCP;
  using Teuchos::rcp;

  //int g_size = 0;  // Commenting out since g_size is not used.
  // Solution at convergence is the response at index num_g_
  {
    const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g_);
    if (Teuchos::nonnull(gx_out)) {
      //g_size = gx_out->space()->dim();
      Thyra::copy(*modelInArgs.get_x(), gx_out.ptr());
    }
  }

  // Setup output for final evalution of underlying model
  Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model_->createOutArgs();
  {
    // Responses
    for (int j = 0; j < num_g_; ++j) {
      const RCP<Thyra::VectorBase<Scalar> > g_out = outArgs.get_g(j);
      // Forward to underlying model
      modelOutArgs.set_g(j, g_out);
    }

    // Jacobian
    {
      bool jacobianRequired = false;
      for (int j = 0; j <= num_g_; ++j) { // resize
        for (int l = 0; l < num_p_; ++l) {
          const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
            outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
          if (!dgdp_support.none()) {
            const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
              outArgs.get_DgDp(j, l);
            if (!dgdp_deriv.isEmpty()) {
              jacobianRequired = true;
            }
          }
        }
      }
      if (jacobianRequired) {
        const RCP<Thyra::LinearOpWithSolveBase<Scalar> > jacobian =
          model_->create_W();
        modelOutArgs.set_W(jacobian);
      }
    }

    // DfDp derivatives
    for (int l = 0; l < num_p_; ++l) {
      Thyra::ModelEvaluatorBase::DerivativeSupport dfdp_request;
      for (int j = 0; j <= num_g_; ++j) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
          outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
        if (!dgdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
            outArgs.get_DgDp(j, l);
          if (Teuchos::nonnull(dgdp_deriv.getLinearOp())) {
            dfdp_request.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
          } else if (Teuchos::nonnull(dgdp_deriv.getMultiVector())) {
            dfdp_request.plus(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
          }
        }
      }

      if (!dfdp_request.none()) {
        Thyra::ModelEvaluatorBase::Derivative<Scalar> dfdp_deriv;
        if (dfdp_request.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
          dfdp_deriv = Thyra::create_DfDp_mv(*model_, l, Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
        } else if (dfdp_request.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP)) {
          dfdp_deriv = model_->create_DfDp_op(l);
        }
        modelOutArgs.set_DfDp(l, dfdp_deriv);
      }
    }

    // DgDx derivatives
    for (int j = 0; j < num_g_; ++j) {
      Thyra::ModelEvaluatorBase::DerivativeSupport dgdx_request;
      for (int l = 0; l < num_p_; ++l) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
          outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
        if (!dgdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
            outArgs.get_DgDp(j, l);
          if (!dgdp_deriv.isEmpty()) {
            const bool dgdp_mvGrad_required =
              Teuchos::nonnull(dgdp_deriv.getMultiVector()) &&
              dgdp_deriv.getMultiVectorOrientation() == Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM;
            if (dgdp_mvGrad_required) {
              dgdx_request.plus(Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM);
            } else {
              dgdx_request.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
            }
          }
        }
      }

      if (!dgdx_request.none()) {
        Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv;
        if (dgdx_request.supports(Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM)) {
          dgdx_deriv = Thyra::create_DgDx_mv(*model_, j, Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM);
        } else if (dgdx_request.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP)) {
          dgdx_deriv = model_->create_DgDx_op(j);
        }
        modelOutArgs.set_DgDx(j, dgdx_deriv);
      }
    }

    // DgDp derivatives
    for (int l = 0; l < num_p_; ++l) {
      for (int j = 0; j < num_g_; ++j) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
          outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
        if (!dgdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
            outArgs.get_DgDp(j, l);
          Thyra::ModelEvaluatorBase::Derivative<Scalar> model_dgdp_deriv;
          const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op = dgdp_deriv.getLinearOp();
          if (Teuchos::nonnull(dgdp_op)) {
            model_dgdp_deriv = model_->create_DgDp_op(j, l);
          } else {
            model_dgdp_deriv = dgdp_deriv;
          }
          if (!model_dgdp_deriv.isEmpty()) {
            modelOutArgs.set_DgDp(j, l, model_dgdp_deriv);
          }
        }
      }
    }
  }

  // Evaluate underlying model
  model_->evalModel(modelInArgs, modelOutArgs);

  // Assemble user-requested sensitivities
  if (modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_W)) {
    const RCP<Thyra::LinearOpWithSolveBase<Scalar> > jacobian =
      modelOutArgs.get_W();
    if (Teuchos::nonnull(jacobian)) {
      for (int l = 0; l < num_p_; ++l) {
        const Thyra::ModelEvaluatorBase::DerivativeSupport dfdp_support =
          modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DfDp, l);
        if (!dfdp_support.none()) {
          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dfdp_deriv =
            modelOutArgs.get_DfDp(l);
          const RCP<Thyra::MultiVectorBase<Scalar> > dfdp_mv =
            dfdp_deriv.getMultiVector();
          RCP<Thyra::LinearOpBase<Scalar> > dfdp_op =
            dfdp_deriv.getLinearOp();
          if (Teuchos::is_null(dfdp_op)) {
            dfdp_op = dfdp_mv;
          }

          const Thyra::ModelEvaluatorBase::Derivative<Scalar> dxdp_deriv =
            outArgs.get_DgDp(num_g_, l);
          const RCP<Thyra::LinearOpBase<Scalar> > dxdp_op =
            dxdp_deriv.getLinearOp();
          const RCP<Thyra::MultiVectorBase<Scalar> > dxdp_mv =
            dxdp_deriv.getMultiVector();

          RCP<const Thyra::LinearOpBase<Scalar> > minus_dxdp_op;
          RCP<Thyra::MultiVectorBase<Scalar> > minus_dxdp_mv;
          if (Teuchos::nonnull(dfdp_mv)) {
            if (Teuchos::nonnull(dxdp_mv)) {
              minus_dxdp_mv = dxdp_mv; // Use user-provided object as temporary
            } else {
              minus_dxdp_mv =
                Thyra::createMembers(model_->get_x_space(), model_->get_p_space(l));
              minus_dxdp_op = minus_dxdp_mv;
            }
          }

          if (Teuchos::is_null(minus_dxdp_op)) {
            const RCP<const Thyra::LinearOpBase<Scalar> > dfdx_inv_op =
              Thyra::inverse<Scalar>(jacobian);
            minus_dxdp_op = Thyra::multiply<Scalar>(dfdx_inv_op, dfdp_op);
          }

          if (Teuchos::nonnull(minus_dxdp_mv)) {
            Thyra::assign(minus_dxdp_mv.ptr(), Teuchos::ScalarTraits<Scalar>::zero());

            const Thyra::SolveCriteria<Scalar> defaultSolveCriteria;
            const Thyra::SolveStatus<Scalar> solveStatus =
              Thyra::solve(
                  *jacobian,
                  Thyra::NOTRANS,
                  *dfdp_mv,
                  minus_dxdp_mv.ptr(),
                  Teuchos::ptr(&defaultSolveCriteria));

            //  AGS: Made this a warning instead of exception since it is 'just' post-processing
            if (solveStatus.solveStatus == Thyra::SOLVE_STATUS_UNCONVERGED)
              *(Teuchos::VerboseObjectBase::getDefaultOStream() ) <<
              "\nWARNING: Linear Solver in sensitivity computation failed to fully converge\n"
              << "         Accuracy of sensitivity calculations is less then requested." << std::endl;
          }

          // Solution sensitivities
          if (Teuchos::nonnull(dxdp_mv)) {
            minus_dxdp_mv = Teuchos::null; // Invalidates temporary
            Thyra::scale(-Teuchos::ScalarTraits<Scalar>::one(), dxdp_mv.ptr());
          } else if (Teuchos::nonnull(dxdp_op)) {
            const RCP<Thyra::DefaultMultipliedLinearOp<Scalar> > dxdp_op_downcasted =
              Teuchos::rcp_dynamic_cast<Thyra::DefaultMultipliedLinearOp<Scalar> >(dxdp_op);
            TEUCHOS_TEST_FOR_EXCEPTION(
                Teuchos::is_null(dxdp_op_downcasted),
                std::invalid_argument,
                "Illegal operator for DgDp(" <<
                "j = " << num_g_ << ", " <<
                "index l = " << l << ")\n");

            const RCP<const Thyra::LinearOpBase<Scalar> > minus_id_op =
              Thyra::scale<Scalar>(-Teuchos::ScalarTraits<Scalar>::one(), Thyra::identity(dfdp_op->domain()));

            dxdp_op_downcasted->initialize(Teuchos::tuple(minus_dxdp_op, minus_id_op));
          }

          // Response sensitivities
          for (int j = 0; j < num_g_; ++j) {
            const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
              outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
            if (!dgdp_support.none()) {
              const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv =
                outArgs.get_DgDp(j, l);
              if (!dgdp_deriv.isEmpty()) {
                const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv =
                  modelOutArgs.get_DgDx(j);
                const RCP<const Thyra::MultiVectorBase<Scalar> > dgdx_mv =
                  dgdx_deriv.getMultiVector();
                RCP<const Thyra::LinearOpBase<Scalar> > dgdx_op =
                  dgdx_deriv.getLinearOp();
                if (Teuchos::is_null(dgdx_op)) {
                  dgdx_op = Thyra::adjoint<Scalar>(dgdx_mv);
                }

                const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op =
                  dgdp_deriv.getLinearOp();
                if (Teuchos::nonnull(dgdp_op)) {
                  const RCP<Thyra::DefaultAddedLinearOp<Scalar> > dgdp_op_downcasted =
                    Teuchos::rcp_dynamic_cast<Thyra::DefaultAddedLinearOp<Scalar> >(dgdp_op);
                  TEUCHOS_TEST_FOR_EXCEPTION(
                      Teuchos::is_null(dgdp_op_downcasted),
                      std::invalid_argument,
                      "Illegal operator for DgDp(" <<
                      "j = " << j << ", " <<
                      "index l = " << l << ")\n");

                  dgdp_op_downcasted->uninitialize();

                  const RCP<const Thyra::LinearOpBase<Scalar> > implicit_dgdp_op =
                    Thyra::multiply<Scalar>(
                      Thyra::scale<Scalar>(-Teuchos::ScalarTraits<Scalar>::one(), dgdx_op),
                      minus_dxdp_op);

                  const RCP<const Thyra::LinearOpBase<Scalar> > model_dgdp_op =
                    modelOutArgs.get_DgDp(j, l).getLinearOp();

                  Teuchos::Array<RCP<const Thyra::LinearOpBase<Scalar> > > op_args(2);
                  op_args[0] = model_dgdp_op;
                  op_args[1] = implicit_dgdp_op;
                  dgdp_op_downcasted->initialize(op_args);
                }

                const RCP<Thyra::MultiVectorBase<Scalar> > dgdp_mv =
                  dgdp_deriv.getMultiVector();
                if (Teuchos::nonnull(dgdp_mv)) {
                  if (dgdp_deriv.getMultiVectorOrientation() == Thyra::ModelEvaluatorBase::DERIV_MV_GRADIENT_FORM) {
                    if (Teuchos::nonnull(dxdp_mv)) {
                      Thyra::apply(
                          *dxdp_mv,
                          Thyra::TRANS,
                          *dgdx_mv,
                          dgdp_mv.ptr(),
                          Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    } else {
                      Thyra::apply(
                          *minus_dxdp_mv,
                          Thyra::TRANS,
                          *dgdx_mv,
                          dgdp_mv.ptr(),
                          -Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    }
                  } else {
                    if (Teuchos::nonnull(dxdp_mv)) {
                      Thyra::apply(
                          *dgdx_op,
                          Thyra::NOTRANS,
                          *dxdp_mv,
                          dgdp_mv.ptr(),
                          Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    } else {
                      Thyra::apply(
                          *dgdx_op,
                          Thyra::NOTRANS,
                          *minus_dxdp_mv,
                          dgdp_mv.ptr(),
                          -Teuchos::ScalarTraits<Scalar>::one(),
                          Teuchos::ScalarTraits<Scalar>::one());
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

template <typename Scalar>
Teuchos::RCP<Thyra::LinearOpBase<Scalar> >
Piro::SteadyStateSolver<Scalar>::create_DgDp_op_impl(int j, int l) const
{
  const Teuchos::Array<Teuchos::RCP<const Thyra::LinearOpBase<Scalar> > > dummy =
    Teuchos::tuple(Thyra::zero<Scalar>(this->get_g_space(j), this->get_p_space(l)));
  if (j == num_g_)  {
    return Thyra::defaultMultipliedLinearOp<Scalar>(dummy);
  } else {
    return Teuchos::rcp(new Thyra::DefaultAddedLinearOp<Scalar>(dummy));
  }
}
#endif /*PIRO_STEADYSTATESOLVER_DEF_HPP*/