This file is indexed.

/usr/include/trilinos/MueLu_VisualizationHelpers_def.hpp is in libtrilinos-muelu-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
// @HEADER
//
// ***********************************************************************
//
//        MueLu: A package for multigrid based preconditioning
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
//                    Jonathan Hu       (jhu@sandia.gov)
//                    Andrey Prokopenko (aprokop@sandia.gov)
//                    Ray Tuminaro      (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

#ifndef MUELU_VISUALIZATIONHELPERS_DEF_HPP_
#define MUELU_VISUALIZATIONHELPERS_DEF_HPP_

#include <Xpetra_Matrix.hpp>
#include <Xpetra_CrsMatrixWrap.hpp>
#include <Xpetra_ImportFactory.hpp>
#include <Xpetra_MultiVectorFactory.hpp>
#include "MueLu_VisualizationHelpers_decl.hpp"
#include "MueLu_Level.hpp"
#include "MueLu_Graph.hpp"
#include "MueLu_Monitor.hpp"
#include <vector>
#include <list>
#include <algorithm>
#include <string>

#ifdef HAVE_MUELU_CGAL
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_2.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/convex_hull_3.h>
#endif


namespace MueLu {

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  RCP<ParameterList> VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetValidParameterList() const {
    RCP<ParameterList> validParamList = rcp(new ParameterList());

    validParamList->set< std::string >           ("visualization: output filename",                    "viz%LEVELID",                    "filename for VTK-style visualization output");
    validParamList->set< int >                   ("visualization: output file: time step",             0,                     "time step variable for output file name");// Remove me?
    validParamList->set< int >                   ("visualization: output file: iter",                  0,                     "nonlinear iteration variable for output file name");//Remove me?
    validParamList->set<std::string>             ("visualization: style", "Point Cloud", "style of aggregate visualization for VTK output. Can be 'Point Cloud', 'Jacks', 'Convex Hulls'");
    validParamList->set<bool>                    ("visualization: build colormap",        false,       "Whether to build a random color map in a separate xml file.");
    validParamList->set<bool>                    ("visualization: fine graph edges",      false,                 "Whether to draw all fine node connections along with the aggregates.");

    return validParamList;
  }

  template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::doPointCloud(std::vector<int>& vertices, std::vector<int>& geomSizes, LO numLocalAggs, LO numFineNodes) {
    vertices.reserve(numFineNodes);
    geomSizes.reserve(numFineNodes);
    for(LocalOrdinal i = 0; i < numFineNodes; i++)
    {
      vertices.push_back(i);
      geomSizes.push_back(1);
    }
  }

  template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::doJacks(std::vector<int>& vertices, std::vector<int>& geomSizes, LO numLocalAggs, LO numFineNodes, const std::vector<bool>& isRoot, const ArrayRCP<LO>& vertex2AggId) {
    //For each aggregate, find the root node then connect it with the other nodes in the aggregate
    //Doesn't matter the order, as long as all edges are found.
    vertices.reserve(vertices.size() + 3 * (numFineNodes - numLocalAggs));
    geomSizes.reserve(vertices.size() + 2 * (numFineNodes - numLocalAggs));
    int root = 0;
    for(int i = 0; i < numLocalAggs; i++) //TODO: Replace this O(n^2) with a better way
    {
      while(!isRoot[root])
        root++;
      int numInAggFound = 0;
      for(int j = 0; j < numFineNodes; j++)
      {
        if(j == root) //don't make a connection from the root to itself
        {
          numInAggFound++;
          continue;
        }
        if(vertex2AggId[root] == vertex2AggId[j])
        {
          vertices.push_back(root);
          vertices.push_back(j);
          geomSizes.push_back(2);
          //Also draw the free endpoint explicitly for the current line
          vertices.push_back(j);
          geomSizes.push_back(1);
          numInAggFound++;
          //if(numInAggFound == aggSizes_[vertex2AggId_[root]]) //don't spend more time looking if done with that root
          //  break;
        }
      }
      root++; //get set up to look for the next root
    }
  }

  template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::doConvexHulls2D(std::vector<int>& vertices, std::vector<int>& geomSizes, LO numLocalAggs, LO numFineNodes, const std::vector<bool>& isRoot, const ArrayRCP<LO>& vertex2AggId, const Teuchos::ArrayRCP<const double>& xCoords, const Teuchos::ArrayRCP<const double>& yCoords, const Teuchos::ArrayRCP<const double>& zCoords) {
    for(int agg = 0; agg < numLocalAggs; agg++) {
      std::list<int> aggNodes;
      for(int i = 0; i < numFineNodes; i++) {
        if(vertex2AggId[i] == agg)
          aggNodes.push_back(i);
      }
      //have a list of nodes in the aggregate
      TEUCHOS_TEST_FOR_EXCEPTION(aggNodes.size() == 0, Exceptions::RuntimeError,
               "CoarseningVisualization::doConvexHulls2D: aggregate contains zero nodes!");
      if(aggNodes.size() == 1) {
        vertices.push_back(aggNodes.front());
        geomSizes.push_back(1);
        continue;
      }
      if(aggNodes.size() == 2) {
        vertices.push_back(aggNodes.front());
        vertices.push_back(aggNodes.back());
        geomSizes.push_back(2);
        continue;
      }
      //check if all points are collinear, need to explicitly draw a line in that case.
      bool collinear = true; //assume true at first, if a segment not parallel to others then clear
      {
        std::list<int>::iterator it = aggNodes.begin();
        myVec3 firstPoint(xCoords[*it], yCoords[*it], 0);
        it++;
        myVec3 secondPoint(xCoords[*it], yCoords[*it], 0);
        it++;  //it now points to third node in the aggregate
        myVec3 norm1(-(secondPoint.y - firstPoint.y), secondPoint.x - firstPoint.x, 0);
        do {
          myVec3 thisNorm(yCoords[*it] - firstPoint.y, firstPoint.x - xCoords[*it], 0);
          //rotate one of the vectors by 90 degrees so that dot product is 0 if the two are parallel
          double temp = thisNorm.x;
          thisNorm.x = thisNorm.y;
          thisNorm.y = temp;
          double comp = dotProduct(norm1, thisNorm);
          if(-1e-8 > comp || comp > 1e-8) {
            collinear = false;
            break;
          }
          it++;
        }
        while(it != aggNodes.end());
      }
      if(collinear)
      {
        //find the most distant two points in the plane and use as endpoints of line representing agg
        std::list<int>::iterator min = aggNodes.begin();    //min X then min Y where x is a tie
        std::list<int>::iterator max = aggNodes.begin(); //max X then max Y where x is a tie
        for(std::list<int>::iterator it = ++aggNodes.begin(); it != aggNodes.end(); it++) {
          if(xCoords[*it] < xCoords[*min])
            min = it;
          else if(xCoords[*it] == xCoords[*min]) {
            if(yCoords[*it] < yCoords[*min])
              min = it;
          }
          if(xCoords[*it] > xCoords[*max])
            max = it;
          else if(xCoords[*it] == xCoords[*max]) {
            if(yCoords[*it] > yCoords[*max])
              max = it;
          }
        }
        //Just set up a line between nodes *min and *max
        vertices.push_back(*min);
        vertices.push_back(*max);
        geomSizes.push_back(2);
        continue; //jump to next aggregate in loop
      }
      std::vector<myVec2> points;
      std::vector<int> nodes;
      for(std::list<int>::iterator it = aggNodes.begin(); it != aggNodes.end(); it++) {
        points.push_back(myVec2(xCoords[*it], yCoords[*it]));
        nodes.push_back(*it);
      }
      std::vector<int> hull = giftWrap(points, nodes, xCoords, yCoords);
      vertices.reserve(vertices.size() + hull.size());
      for(size_t i = 0; i < hull.size(); i++) {
        vertices.push_back(hull[i]);
      }
      geomSizes.push_back(hull.size());
    }
  }

#ifdef HAVE_MUELU_CGAL
  template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::doCGALConvexHulls2D(std::vector<int>& vertices, std::vector<int>& geomSizes, LO numLocalAggs, LO numFineNodes, const std::vector<bool>& isRoot, const ArrayRCP<LO>& vertex2AggId, const Teuchos::ArrayRCP<const double>& xCoords, const Teuchos::ArrayRCP<const double>& yCoords, const Teuchos::ArrayRCP<const double>& zCoords) {

    typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
    typedef K::Point_2 Point_2;

    for(int agg = 0; agg < numLocalAggs; agg++) {
      std::vector<int> aggNodes;
      std::vector<Point_2> aggPoints;
      for(int i = 0; i < numFineNodes; i++) {
        if(vertex2AggId[i] == agg) {
          Point_2 p(xCoords[i], yCoords[i]);
          aggPoints.push_back(p);
          aggNodes.push_back(i);
        }
      }
      //have a list of nodes in the aggregate
      TEUCHOS_TEST_FOR_EXCEPTION(aggNodes.size() == 0, Exceptions::RuntimeError,
               "CoarseningVisualization::doCGALConvexHulls2D: aggregate contains zero nodes!");
      if(aggNodes.size() == 1) {
        vertices.push_back(aggNodes.front());
        geomSizes.push_back(1);
        continue;
      }
      if(aggNodes.size() == 2) {
        vertices.push_back(aggNodes.front());
        vertices.push_back(aggNodes.back());
        geomSizes.push_back(2);
        continue;
      }
      //check if all points are collinear, need to explicitly draw a line in that case.
      bool collinear = true; //assume true at first, if a segment not parallel to others then clear
      {
        std::vector<int>::iterator it = aggNodes.begin();
        myVec3 firstPoint(xCoords[*it], yCoords[*it], 0);
        it++;
        myVec3 secondPoint(xCoords[*it], yCoords[*it], 0);
        it++;  //it now points to third node in the aggregate
        myVec3 norm1(-(secondPoint.y - firstPoint.y), secondPoint.x - firstPoint.x, 0);
        do {
          myVec3 thisNorm(yCoords[*it] - firstPoint.y, firstPoint.x - xCoords[*it], 0);
          //rotate one of the vectors by 90 degrees so that dot product is 0 if the two are parallel
          double temp = thisNorm.x;
          thisNorm.x = thisNorm.y;
          thisNorm.y = temp;
          double comp = dotProduct(norm1, thisNorm);
          if(-1e-8 > comp || comp > 1e-8) {
            collinear = false;
            break;
          }
          it++;
        }
        while(it != aggNodes.end());
      }
      if(collinear)
      {
        //find the most distant two points in the plane and use as endpoints of line representing agg
        std::vector<int>::iterator min = aggNodes.begin();    //min X then min Y where x is a tie
        std::vector<int>::iterator max = aggNodes.begin(); //max X then max Y where x is a tie
        for(std::vector<int>::iterator it = ++aggNodes.begin(); it != aggNodes.end(); it++) {
          if(xCoords[*it] < xCoords[*min])
            min = it;
          else if(xCoords[*it] == xCoords[*min]) {
            if(yCoords[*it] < yCoords[*min])
              min = it;
          }
          if(xCoords[*it] > xCoords[*max])
            max = it;
          else if(xCoords[*it] == xCoords[*max]) {
            if(yCoords[*it] > yCoords[*max])
              max = it;
          }
        }
        //Just set up a line between nodes *min and *max
        vertices.push_back(*min);
        vertices.push_back(*max);
        geomSizes.push_back(2);
        continue; //jump to next aggregate in loop
      }
      // aggregate has more than 2 points and is not collinear
      {
        std::vector<Point_2> result;
        CGAL::convex_hull_2( aggPoints.begin(), aggPoints.end(), std::back_inserter(result) );
        // loop over all result points and find the corresponding node id
        for (size_t r = 0; r < result.size(); r++) {
          // loop over all aggregate nodes and find corresponding node id
          for(size_t l = 0; l < aggNodes.size(); l++)
          {
            if(fabs(result[r].x() - xCoords[aggNodes[l]]) < 1e-12 &&
               fabs(result[r].y() - yCoords[aggNodes[l]]) < 1e-12)
            {
              vertices.push_back(aggNodes[l]);
              break;
            }
          }

        }
        geomSizes.push_back(result.size());
      }
    }
  }

#endif

  template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::doConvexHulls3D(std::vector<int>& vertices, std::vector<int>& geomSizes, LO numLocalAggs, LO numFineNodes, const std::vector<bool>& isRoot, const ArrayRCP<LO>& vertex2AggId, const Teuchos::ArrayRCP<const double>& xCoords, const Teuchos::ArrayRCP<const double>& yCoords, const Teuchos::ArrayRCP<const double>& zCoords) {
    //Use 3D quickhull algo.
    //Vector of node indices representing triangle vertices
    //Note: Calculate the hulls first since will only include point data for points in the hulls
    //Effectively the size() of vertIndices after each hull is added to it
    typedef std::list<int>::iterator Iter;
    for(int agg = 0; agg < numLocalAggs; agg++) {
      std::list<int> aggNodes; //At first, list of all nodes in the aggregate. As nodes are enclosed or included by/in hull, remove them
      for(int i = 0; i < numFineNodes; i++) {
        if(vertex2AggId[i] == agg)
          aggNodes.push_back(i);
      }
      //First, check anomalous cases
      TEUCHOS_TEST_FOR_EXCEPTION(aggNodes.size() == 0, Exceptions::RuntimeError,
               "CoarseningVisualization::doConvexHulls3D: aggregate contains zero nodes!");
      if(aggNodes.size() == 1) {
        vertices.push_back(aggNodes.front());
        geomSizes.push_back(1);
        continue;
      } else if(aggNodes.size() == 2) {
        vertices.push_back(aggNodes.front());
        vertices.push_back(aggNodes.back());
        geomSizes.push_back(2);
        continue;
      }
      //check for collinearity
      bool areCollinear = true;
      {
        Iter it = aggNodes.begin();
        myVec3 firstVec(xCoords[*it], yCoords[*it], zCoords[*it]);
        myVec3 comp;
        {
          it++;
          myVec3 secondVec(xCoords[*it], yCoords[*it], zCoords[*it]); //cross this with other vectors to compare
          comp = vecSubtract(secondVec, firstVec);
          it++;
        }
        for(; it != aggNodes.end(); it++) {
          myVec3 thisVec(xCoords[*it], yCoords[*it], zCoords[*it]);
          myVec3 cross = crossProduct(vecSubtract(thisVec, firstVec), comp);
          if(mymagnitude(cross) > 1e-10) {
            areCollinear = false;
            break;
          }
        }
      }
      if(areCollinear)
      {
        //find the endpoints of segment describing all the points
        //compare x, if tie compare y, if tie compare z
        Iter min = aggNodes.begin();
        Iter max = aggNodes.begin();
        Iter it = ++aggNodes.begin();
        for(; it != aggNodes.end(); it++) {
          if(xCoords[*it] < xCoords[*min]) min = it;
          else if(xCoords[*it] == xCoords[*min]) {
            if(yCoords[*it] < yCoords[*min]) min = it;
            else if(yCoords[*it] == yCoords[*min]) {
              if(zCoords[*it] < zCoords[*min]) min = it;
            }
          }
          if(xCoords[*it] > xCoords[*max]) max = it;
          else if(xCoords[*it] == xCoords[*max]) {
            if(yCoords[*it] > yCoords[*max]) max = it;
            else if(yCoords[*it] == yCoords[*max]) {
              if(zCoords[*it] > zCoords[*max])
                max = it;
            }
          }
        }
        vertices.push_back(*min);
        vertices.push_back(*max);
        geomSizes.push_back(2);
        continue;
      }
      bool areCoplanar = true;
      {
        //number of points is known to be >= 3
        Iter vert = aggNodes.begin();
        myVec3 v1(xCoords[*vert], yCoords[*vert], zCoords[*vert]);
        vert++;
        myVec3 v2(xCoords[*vert], yCoords[*vert], zCoords[*vert]);
        vert++;
        myVec3 v3(xCoords[*vert], yCoords[*vert], zCoords[*vert]);
        vert++;
        //Make sure the first three points aren't also collinear (need a non-degenerate triangle to get a normal)
        while(mymagnitude(crossProduct(vecSubtract(v1, v2), vecSubtract(v1, v3))) < 1e-10) {
          //Replace the third point with the next point
          v3 = myVec3(xCoords[*vert], yCoords[*vert], zCoords[*vert]);
          vert++;
        }
        for(; vert != aggNodes.end(); vert++) {
          myVec3 pt(xCoords[*vert], yCoords[*vert], zCoords[*vert]);
          if(fabs(pointDistFromTri(pt, v1, v2, v3)) > 1e-12) {
            areCoplanar = false;
            break;
          }
        }
        if(areCoplanar) {
          //do 2D convex hull
          myVec3 planeNorm = getNorm(v1, v2, v3);
          planeNorm.x = fabs(planeNorm.x);
          planeNorm.y = fabs(planeNorm.y);
          planeNorm.z = fabs(planeNorm.z);
          std::vector<myVec2> points;
          std::vector<int> nodes;
          if(planeNorm.x >= planeNorm.y && planeNorm.x >= planeNorm.z) {
            //project points to yz plane to make hull
            for(Iter it = aggNodes.begin(); it != aggNodes.end(); it++) {
              nodes.push_back(*it);
              points.push_back(myVec2(yCoords[*it], zCoords[*it]));
            }
          }
          if(planeNorm.y >= planeNorm.x && planeNorm.y >= planeNorm.z) {
            //use xz
            for(Iter it = aggNodes.begin(); it != aggNodes.end(); it++) {
              nodes.push_back(*it);
              points.push_back(myVec2(xCoords[*it], zCoords[*it]));
            }
          }
          if(planeNorm.z >= planeNorm.x && planeNorm.z >= planeNorm.y) {
            for(Iter it = aggNodes.begin(); it != aggNodes.end(); it++) {
              nodes.push_back(*it);
              points.push_back(myVec2(xCoords[*it], yCoords[*it]));
            }
          }
          std::vector<int> convhull2d = giftWrap(points, nodes, xCoords, yCoords);
          geomSizes.push_back(convhull2d.size());
          vertices.reserve(vertices.size() + convhull2d.size());
          for(size_t i = 0; i < convhull2d.size(); i++)
            vertices.push_back(convhull2d[i]);
          continue;
        }
      }
      Iter exIt = aggNodes.begin(); //iterator to be used for searching for min/max x/y/z
      int extremeSix[] = {*exIt, *exIt, *exIt, *exIt, *exIt, *exIt}; //nodes with minimumX, maxX, minY ...
      exIt++;
      for(; exIt != aggNodes.end(); exIt++) {
        Iter it = exIt;
        if(xCoords[*it] < xCoords[extremeSix[0]] ||
          (xCoords[*it] == xCoords[extremeSix[0]] && yCoords[*it] < yCoords[extremeSix[0]]) ||
          (xCoords[*it] == xCoords[extremeSix[0]] && yCoords[*it] == yCoords[extremeSix[0]] && zCoords[*it] < zCoords[extremeSix[0]]))
            extremeSix[0] = *it;
        if(xCoords[*it] > xCoords[extremeSix[1]] ||
          (xCoords[*it] == xCoords[extremeSix[1]] && yCoords[*it] > yCoords[extremeSix[1]]) ||
          (xCoords[*it] == xCoords[extremeSix[1]] && yCoords[*it] == yCoords[extremeSix[1]] && zCoords[*it] > zCoords[extremeSix[1]]))
            extremeSix[1] = *it;
        if(yCoords[*it] < yCoords[extremeSix[2]] ||
          (yCoords[*it] == yCoords[extremeSix[2]] && zCoords[*it] < zCoords[extremeSix[2]]) ||
          (yCoords[*it] == yCoords[extremeSix[2]] && zCoords[*it] == zCoords[extremeSix[2]] && xCoords[*it] < xCoords[extremeSix[2]]))
            extremeSix[2] = *it;
        if(yCoords[*it] > yCoords[extremeSix[3]] ||
          (yCoords[*it] == yCoords[extremeSix[3]] && zCoords[*it] > zCoords[extremeSix[3]]) ||
          (yCoords[*it] == yCoords[extremeSix[3]] && zCoords[*it] == zCoords[extremeSix[3]] && xCoords[*it] > xCoords[extremeSix[3]]))
            extremeSix[3] = *it;
        if(zCoords[*it] < zCoords[extremeSix[4]] ||
          (zCoords[*it] == zCoords[extremeSix[4]] && xCoords[*it] < xCoords[extremeSix[4]]) ||
          (zCoords[*it] == zCoords[extremeSix[4]] && xCoords[*it] == xCoords[extremeSix[4]] && yCoords[*it] < yCoords[extremeSix[4]]))
            extremeSix[4] = *it;
        if(zCoords[*it] > zCoords[extremeSix[5]] ||
          (zCoords[*it] == zCoords[extremeSix[5]] && xCoords[*it] > xCoords[extremeSix[5]]) ||
          (zCoords[*it] == zCoords[extremeSix[5]] && xCoords[*it] == xCoords[extremeSix[5]] && yCoords[*it] > zCoords[extremeSix[5]]))
            extremeSix[5] = *it;
      }
      myVec3 extremeVectors[6];
      for(int i = 0; i < 6; i++) {
        myVec3 thisExtremeVec(xCoords[extremeSix[i]], yCoords[extremeSix[i]], zCoords[extremeSix[i]]);
        extremeVectors[i] = thisExtremeVec;
      }
      double maxDist = 0;
      int base1 = 0; //ints from 0-5: which pair out of the 6 extreme points are the most distant? (indices in extremeSix and extremeVectors)
      int base2 = 0;
      for(int i = 0; i < 5; i++) {
        for(int j = i + 1; j < 6; j++) {
          double thisDist = distance(extremeVectors[i], extremeVectors[j]);
          if(thisDist > maxDist) {
            maxDist = thisDist;
            base1 = i;
            base2 = j;
          }
        }
      }
      std::list<myTriangle> hullBuilding;    //each Triangle is a triplet of nodes (int IDs) that form a triangle
      //remove base1 and base2 iters from aggNodes, they are known to be in the hull
      aggNodes.remove(extremeSix[base1]);
      aggNodes.remove(extremeSix[base2]);
      //extremeSix[base1] and [base2] still have the myVec3 representation
      myTriangle tri;
      tri.v1 = extremeSix[base1];
      tri.v2 = extremeSix[base2];
      //Now find the point that is furthest away from the line between base1 and base2
      maxDist = 0;
      //need the vectors to do "quadruple product" formula
      myVec3 b1 = extremeVectors[base1];
      myVec3 b2 = extremeVectors[base2];
      Iter thirdNode;
      for(Iter node = aggNodes.begin(); node != aggNodes.end(); node++) {
        myVec3 nodePos(xCoords[*node], yCoords[*node], zCoords[*node]);
        double dist = mymagnitude(crossProduct(vecSubtract(nodePos, b1), vecSubtract(nodePos, b2))) / mymagnitude(vecSubtract(b2, b1));
        if(dist > maxDist) {
          maxDist = dist;
          thirdNode = node;
        }
      }
      //Now know the last node in the first triangle
      tri.v3 = *thirdNode;
      hullBuilding.push_back(tri);
      myVec3 b3(xCoords[*thirdNode], yCoords[*thirdNode], zCoords[*thirdNode]);
      aggNodes.erase(thirdNode);
      //Find the fourth node (most distant from triangle) to form tetrahedron
      maxDist = 0;
      int fourthVertex = -1;
      for(Iter node = aggNodes.begin(); node != aggNodes.end(); node++) {
        myVec3 thisNode(xCoords[*node], yCoords[*node], zCoords[*node]);
        double nodeDist = pointDistFromTri(thisNode, b1, b2, b3);
        if(nodeDist > maxDist) {
          maxDist = nodeDist;
          fourthVertex = *node;
        }
      }
      aggNodes.remove(fourthVertex);
      myVec3 b4(xCoords[fourthVertex], yCoords[fourthVertex], zCoords[fourthVertex]);
      //Add three new triangles to hullBuilding to form the first tetrahedron
      //use tri to hold the triangle info temporarily before being added to list
      tri = hullBuilding.front();
      tri.v1 = fourthVertex;
      hullBuilding.push_back(tri);
      tri = hullBuilding.front();
      tri.v2 = fourthVertex;
      hullBuilding.push_back(tri);
      tri = hullBuilding.front();
      tri.v3 = fourthVertex;
      hullBuilding.push_back(tri);
      //now orient all four triangles so that the vertices are oriented clockwise (so getNorm_ points outward for each)
      myVec3 barycenter((b1.x + b2.x + b3.x + b4.x) / 4.0, (b1.y + b2.y + b3.y + b4.y) / 4.0, (b1.z + b2.z + b3.z + b4.z) / 4.0);
      for(std::list<myTriangle>::iterator tetTri = hullBuilding.begin(); tetTri != hullBuilding.end(); tetTri++) {
        myVec3 triVert1(xCoords[tetTri->v1], yCoords[tetTri->v1], zCoords[tetTri->v1]);
        myVec3 triVert2(xCoords[tetTri->v2], yCoords[tetTri->v2], zCoords[tetTri->v2]);
        myVec3 triVert3(xCoords[tetTri->v3], yCoords[tetTri->v3], zCoords[tetTri->v3]);
        myVec3 trinorm = getNorm(triVert1, triVert2, triVert3);
        myVec3 ptInPlane = tetTri == hullBuilding.begin() ? b1 : b4; //first triangle definitely has b1 in it, other three definitely have b4
        if(isInFront(barycenter, ptInPlane, trinorm)) {
          //don't want the faces of the tetrahedron to face inwards (towards barycenter) so reverse orientation
          //by swapping two vertices
          int temp = tetTri->v1;
          tetTri->v1 = tetTri->v2;
          tetTri->v2 = temp;
        }
      }
      //now, have starting polyhedron in hullBuilding (all faces are facing outwards according to getNorm_) and remaining nodes to process are in aggNodes
      //recursively, for each triangle, make a list of the points that are 'in front' of the triangle. Find the point with the maximum distance from the triangle.
      //Add three new triangles, each sharing one edge with the original triangle but now with the most distant point as a vertex. Remove the most distant point from
      //the list of all points that need to be processed. Also from that list remove all points that are in front of the original triangle but not in front of all three
      //new triangles, since they are now enclosed in the hull.
      //Construct point lists for each face of the tetrahedron individually.
      myVec3 trinorms[4]; //normals to the four tetrahedron faces, now oriented outwards
      int index = 0;
      for(std::list<myTriangle>::iterator tetTri = hullBuilding.begin(); tetTri != hullBuilding.end(); tetTri++) {
        myVec3 triVert1(xCoords[tetTri->v1], yCoords[tetTri->v1], zCoords[tetTri->v1]);
        myVec3 triVert2(xCoords[tetTri->v2], yCoords[tetTri->v2], zCoords[tetTri->v2]);
        myVec3 triVert3(xCoords[tetTri->v3], yCoords[tetTri->v3], zCoords[tetTri->v3]);
        trinorms[index] = getNorm(triVert1, triVert2, triVert3);
        index++;
      }
      std::list<int> startPoints1;
      std::list<int> startPoints2;
      std::list<int> startPoints3;
      std::list<int> startPoints4;
      //scope this so that 'point' is not in function scope
      {
        Iter point = aggNodes.begin();
        while(!aggNodes.empty())  //this removes points one at a time as they are put in startPointsN or are already done
        {
          myVec3 pointVec(xCoords[*point], yCoords[*point], zCoords[*point]);
          //Note: Because of the way the tetrahedron faces are constructed above,
          //face 1 definitely contains b1 and faces 2-4 definitely contain b4.
          if(isInFront(pointVec, b1, trinorms[0])) {
            startPoints1.push_back(*point);
            point = aggNodes.erase(point);
          } else if(isInFront(pointVec, b4, trinorms[1])) {
            startPoints2.push_back(*point);
            point = aggNodes.erase(point);
          } else if(isInFront(pointVec, b4, trinorms[2])) {
            startPoints3.push_back(*point);
            point = aggNodes.erase(point);
          } else if(isInFront(pointVec, b4, trinorms[3])) {
            startPoints4.push_back(*point);
            point = aggNodes.erase(point);
          } else {
            point = aggNodes.erase(point); //points here are already inside tetrahedron.
          }
        }
        //Call processTriangle for each triangle in the initial tetrahedron, one at a time.
      }
      typedef std::list<myTriangle>::iterator TriIter;
      TriIter firstTri = hullBuilding.begin();
      myTriangle start1 = *firstTri;
      firstTri++;
      myTriangle start2 = *firstTri;
      firstTri++;
      myTriangle start3 = *firstTri;
      firstTri++;
      myTriangle start4 = *firstTri;
      //kick off depth-first recursive filling of hullBuilding list with all triangles in the convex hull
      if(!startPoints1.empty())
        processTriangle(hullBuilding, start1, startPoints1, barycenter, xCoords, yCoords, zCoords);
      if(!startPoints2.empty())
        processTriangle(hullBuilding, start2, startPoints2, barycenter, xCoords, yCoords, zCoords);
      if(!startPoints3.empty())
        processTriangle(hullBuilding, start3, startPoints3, barycenter, xCoords, yCoords, zCoords);
      if(!startPoints4.empty())
        processTriangle(hullBuilding, start4, startPoints4, barycenter, xCoords, yCoords, zCoords);
      //hullBuilding now has all triangles that make up this hull.
      //Dump hullBuilding info into the list of all triangles for the scene.
      vertices.reserve(vertices.size() + 3 * hullBuilding.size());
      for(TriIter hullTri = hullBuilding.begin(); hullTri != hullBuilding.end(); hullTri++) {
        vertices.push_back(hullTri->v1);
        vertices.push_back(hullTri->v2);
        vertices.push_back(hullTri->v3);
        geomSizes.push_back(3);
      }
    }
  }

#ifdef HAVE_MUELU_CGAL
  template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::doCGALConvexHulls3D(std::vector<int>& vertices, std::vector<int>& geomSizes, LO numLocalAggs, LO numFineNodes, const std::vector<bool>& isRoot, const ArrayRCP<LO>& vertex2AggId, const Teuchos::ArrayRCP<const double>& xCoords, const Teuchos::ArrayRCP<const double>& yCoords, const Teuchos::ArrayRCP<const double>& zCoords) {

    typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
    typedef K::Point_3 Point_3;
    typedef CGAL::Polyhedron_3<K> Polyhedron_3;
    typedef std::vector<int>::iterator Iter;
    for(int agg = 0; agg < numLocalAggs; agg++) {
      std::vector<int> aggNodes;
      std::vector<Point_3> aggPoints;
      for(int i = 0; i < numFineNodes; i++) {
        if(vertex2AggId[i] == agg) {
          Point_3 p(xCoords[i], yCoords[i], zCoords[i]);
          aggPoints.push_back(p);
          aggNodes.push_back(i);
        }
      }
      //First, check anomalous cases
      TEUCHOS_TEST_FOR_EXCEPTION(aggNodes.size() == 0, Exceptions::RuntimeError,
               "CoarseningVisualization::doCGALConvexHulls3D: aggregate contains zero nodes!");
      if(aggNodes.size() == 1) {
        vertices.push_back(aggNodes.front());
        geomSizes.push_back(1);
        continue;
      } else if(aggNodes.size() == 2) {
        vertices.push_back(aggNodes.front());
        vertices.push_back(aggNodes.back());
        geomSizes.push_back(2);
        continue;
      }
      //check for collinearity
      bool areCollinear = true;
      {
        Iter it = aggNodes.begin();
        myVec3 firstVec(xCoords[*it], yCoords[*it], zCoords[*it]);
        myVec3 comp;
        {
          it++;
          myVec3 secondVec(xCoords[*it], yCoords[*it], zCoords[*it]); //cross this with other vectors to compare
          comp = vecSubtract(secondVec, firstVec);
          it++;
        }
        for(; it != aggNodes.end(); it++) {
          myVec3 thisVec(xCoords[*it], yCoords[*it], zCoords[*it]);
          myVec3 cross = crossProduct(vecSubtract(thisVec, firstVec), comp);
          if(mymagnitude(cross) > 1e-8) {
            areCollinear = false;
            break;
          }
        }
      }
      if(areCollinear)
      {
        //find the endpoints of segment describing all the points
        //compare x, if tie compare y, if tie compare z
        Iter min = aggNodes.begin();
        Iter max = aggNodes.begin();
        Iter it = ++aggNodes.begin();
        for(; it != aggNodes.end(); it++) {
          if(xCoords[*it] < xCoords[*min]) min = it;
          else if(xCoords[*it] == xCoords[*min]) {
            if(yCoords[*it] < yCoords[*min]) min = it;
            else if(yCoords[*it] == yCoords[*min]) {
              if(zCoords[*it] < zCoords[*min]) min = it;
            }
          }
          if(xCoords[*it] > xCoords[*max]) max = it;
          else if(xCoords[*it] == xCoords[*max]) {
            if(yCoords[*it] > yCoords[*max]) max = it;
            else if(yCoords[*it] == yCoords[*max]) {
              if(zCoords[*it] > zCoords[*max])
                max = it;
            }
          }
        }
        vertices.push_back(*min);
        vertices.push_back(*max);
        geomSizes.push_back(2);
        continue;
      }
      // do not handle coplanar or general case here. Just let's use CGAL
      {
        Polyhedron_3 result;
        CGAL::convex_hull_3( aggPoints.begin(), aggPoints.end(), result);

        // loop over all facets
        Polyhedron_3::Facet_iterator fi;
        for (fi = result.facets_begin(); fi != result.facets_end(); fi++) {
          int cntVertInAgg = 0;
          Polyhedron_3::Halfedge_around_facet_const_circulator hit = fi->facet_begin();
          do {
            const Point_3 & pp = hit->vertex()->point();
            // loop over all aggregate nodes and find corresponding node id
            for(size_t l = 0; l < aggNodes.size(); l++)
            {
              if(fabs(pp.x() - xCoords[aggNodes[l]]) < 1e-12 &&
                 fabs(pp.y() - yCoords[aggNodes[l]]) < 1e-12 &&
                 fabs(pp.z() - zCoords[aggNodes[l]]) < 1e-12)
              {
                vertices.push_back(aggNodes[l]);
                cntVertInAgg++;
                break;
              }
            }
          } while (++hit != fi->facet_begin());
          geomSizes.push_back(cntVertInAgg);
        }
      }
    }

  }
#endif

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::doGraphEdges(std::vector<int>& vertices, std::vector<int>& geomSizes, Teuchos::RCP<GraphBase>& G, Teuchos::ArrayRCP<const double> & fx, Teuchos::ArrayRCP<const double> & fy, Teuchos::ArrayRCP<const double> & fz) {
    ArrayView<const Scalar> values;
    ArrayView<const LocalOrdinal> neighbors;

    std::vector<std::pair<int, int> > vert1; //vertices (node indices)

    ArrayView<const LocalOrdinal> indices;
    for(LocalOrdinal locRow = 0; locRow < LocalOrdinal(G->GetNodeNumVertices()); locRow++) {
      neighbors = G->getNeighborVertices(locRow);
      //Add those local indices (columns) to the list of connections (which are pairs of the form (localM, localN))
      for(int gEdge = 0; gEdge < int(neighbors.size()); ++gEdge) {
        vert1.push_back(std::pair<int, int>(locRow, neighbors[gEdge]));
      }
    }
    for(size_t i = 0; i < vert1.size(); i ++) {
      if(vert1[i].first > vert1[i].second) {
        int temp = vert1[i].first;
        vert1[i].first = vert1[i].second;
        vert1[i].second = temp;
      }
    }
    std::sort(vert1.begin(), vert1.end());
    std::vector<std::pair<int, int> >::iterator newEnd = unique(vert1.begin(), vert1.end()); //remove duplicate edges
    vert1.erase(newEnd, vert1.end());
    //std::vector<int> points1;
    vertices.reserve(2 * vert1.size());
    geomSizes.reserve(vert1.size());
    for(size_t i = 0; i < vert1.size(); i++) {
      vertices.push_back(vert1[i].first);
      vertices.push_back(vert1[i].second);
      geomSizes.push_back(2);
    }
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  myVec3 VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::crossProduct(myVec3 v1, myVec3 v2)
  {
    return myVec3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::dotProduct(myVec2 v1, myVec2 v2)
  {
    return v1.x * v2.x + v1.y * v2.y;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::dotProduct(myVec3 v1, myVec3 v2)
  {
    return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  bool VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::isInFront(myVec3 point, myVec3 inPlane, myVec3 n)
  {
    myVec3 rel(point.x - inPlane.x, point.y - inPlane.y, point.z - inPlane.z); //position of the point relative to the plane
    return dotProduct(rel, n) > 1e-12 ? true : false;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::mymagnitude(myVec2 vec)
  {
    return sqrt(dotProduct(vec, vec));
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::mymagnitude(myVec3 vec)
  {
    return sqrt(dotProduct(vec, vec));
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::distance(myVec2 p1, myVec2 p2)
  {
    return mymagnitude(vecSubtract(p1, p2));
  }


  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::distance(myVec3 p1, myVec3 p2)
  {
    return mymagnitude(vecSubtract(p1, p2));
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  myVec2 VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::vecSubtract(myVec2 v1, myVec2 v2)
  {
    return myVec2(v1.x - v2.x, v1.y - v2.y);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  myVec3 VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::vecSubtract(myVec3 v1, myVec3 v2)
  {
    return myVec3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  myVec2 VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getNorm(myVec2 v) //"normal" to a 2D vector - just rotate 90 degrees to left
  {
    return myVec2(v.y, -v.x);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  myVec3 VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getNorm(myVec3 v1, myVec3 v2, myVec3 v3) //normal to face of triangle (will be outward rel. to polyhedron) (v1, v2, v3 are in CCW order when normal is toward viewpoint)
  {
    return crossProduct(vecSubtract(v2, v1), vecSubtract(v3, v1));
  }

  //get minimum distance from 'point' to plane containing v1, v2, v3 (or the triangle with v1, v2, v3 as vertices)
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::pointDistFromTri(myVec3 point, myVec3 v1, myVec3 v2, myVec3 v3)
  {
    using namespace std;
    myVec3 norm = getNorm(v1, v2, v3);
    //must normalize the normal vector
    double normScl = mymagnitude(norm);
    double rv = 0.0;
    if (normScl > 1e-8) {
      norm.x /= normScl;
      norm.y /= normScl;
      norm.z /= normScl;
      rv = fabs(dotProduct(norm, vecSubtract(point, v1)));
    } else {
      // triangle is degenerated
      myVec3 test1 = vecSubtract(v3, v1);
      myVec3 test2 = vecSubtract(v2, v1);
      bool useTest1 = mymagnitude(test1) > 0.0 ? true : false;
      bool useTest2 = mymagnitude(test2) > 0.0 ? true : false;
      if(useTest1 == true) {
        double normScl1 = mymagnitude(test1);
        test1.x /= normScl1;
        test1.y /= normScl1;
        test1.z /= normScl1;
        rv = fabs(dotProduct(test1, vecSubtract(point, v1)));
      } else if (useTest2 == true) {
        double normScl2 = mymagnitude(test2);
        test2.x /= normScl2;
        test2.y /= normScl2;
        test2.z /= normScl2;
        rv = fabs(dotProduct(test2, vecSubtract(point, v1)));
      } else {
        TEUCHOS_TEST_FOR_EXCEPTION(true, Exceptions::RuntimeError,
                 "VisualizationHelpers::pointDistFromTri: Could not determine the distance of a point to a triangle.");
      }

    }
    return rv;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::vector<myTriangle> VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::processTriangle(std::list<myTriangle>& tris, myTriangle tri, std::list<int>& pointsInFront, myVec3& barycenter, const Teuchos::ArrayRCP<const double>& xCoords, const Teuchos::ArrayRCP<const double>& yCoords, const Teuchos::ArrayRCP<const double>& zCoords) {
    //*tri is in the tris list, and is the triangle to process here. tris is a complete list of all triangles in the hull so far. pointsInFront is only a list of the nodes in front of tri. Need coords also.
    //precondition: each triangle is already oriented so that getNorm_(v1, v2, v3) points outward (away from interior of hull)
    //First find the point furthest from triangle.
    using namespace std;
    typedef std::list<int>::iterator Iter;
    typedef std::list<myTriangle>::iterator TriIter;
    typedef list<pair<int, int> >::iterator EdgeIter;
    double maxDist = 0;
    //Need vector representations of triangle's vertices
    myVec3 v1(xCoords[tri.v1], yCoords[tri.v1], zCoords[tri.v1]);
    myVec3 v2(xCoords[tri.v2], yCoords[tri.v2], zCoords[tri.v2]);
    myVec3 v3(xCoords[tri.v3], yCoords[tri.v3], zCoords[tri.v3]);
    myVec3 farPointVec; //useful to have both the point's coordinates and it's position in the list
    Iter farPoint = pointsInFront.begin();
    for(Iter point = pointsInFront.begin(); point != pointsInFront.end(); point++)
    {
      myVec3 pointVec(xCoords[*point], yCoords[*point], zCoords[*point]);
      double dist = pointDistFromTri(pointVec, v1, v2, v3);
      if(dist > maxDist)
      {
        dist = maxDist;
        farPointVec = pointVec;
        farPoint = point;
      }
    }
    //Find all the triangles that the point is in front of (can be more than 1)
    //At the same time, remove them from tris, as every one will be replaced later
    vector<myTriangle> visible; //use a list of iterators so that the underlying object is still in tris
    for(TriIter it = tris.begin(); it != tris.end();)
    {
      myVec3 vec1(xCoords[it->v1], yCoords[it->v1], zCoords[it->v1]);
      myVec3 vec2(xCoords[it->v2], yCoords[it->v2], zCoords[it->v2]);
      myVec3 vec3(xCoords[it->v3], yCoords[it->v3], zCoords[it->v3]);
      myVec3 norm = getNorm(vec1, vec2, vec3);
      if(isInFront(farPointVec, vec1, norm))
      {
        visible.push_back(*it);
        it = tris.erase(it);
      }
      else
        it++;
    }
    //Figure out what triangles need to be destroyed/created
    //First create a list of edges (as std::pair<int, int>, where the two ints are the node endpoints)
    list<pair<int, int> > horizon;
    //For each triangle, add edges to the list iff the edge only appears once in the set of all
    //Have members of horizon have the lower node # first, and the higher one second
    for(vector<myTriangle>::iterator it = visible.begin(); it != visible.end(); it++)
    {
      pair<int, int> e1(it->v1, it->v2);
      pair<int, int> e2(it->v2, it->v3);
      pair<int, int> e3(it->v1, it->v3);
      //"sort" the pair values
      if(e1.first > e1.second)
      {
        int temp = e1.first;
        e1.first = e1.second;
        e1.second = temp;
      }
      if(e2.first > e2.second)
      {
        int temp = e2.first;
        e2.first = e2.second;
        e2.second = temp;
      }
      if(e3.first > e3.second)
      {
        int temp = e3.first;
        e3.first = e3.second;
        e3.second = temp;
      }
      horizon.push_back(e1);
      horizon.push_back(e2);
      horizon.push_back(e3);
    }
    //sort based on lower node first, then higher node (lexicographical ordering built in to pair)
    horizon.sort();
    //Remove all edges from horizon, except those that appear exactly once
    {
      EdgeIter it = horizon.begin();
      while(it != horizon.end())
      {
        int occur = count(horizon.begin(), horizon.end(), *it);
        if(occur > 1)
        {
          pair<int, int> removeVal = *it;
          while(removeVal == *it && !(it == horizon.end()))
            it = horizon.erase(it);
        }
        else
          it++;
      }
    }
    //Now make a list of new triangles being created, each of which take 2 vertices from an edge and one from farPoint
    list<myTriangle> newTris;
    for(EdgeIter it = horizon.begin(); it != horizon.end(); it++)
    {
      myTriangle t(it->first, it->second, *farPoint);
      newTris.push_back(t);
    }
    //Ensure every new triangle is oriented outwards, using the barycenter of the initial tetrahedron
    vector<myTriangle> trisToProcess;
    vector<list<int> > newFrontPoints;
    for(TriIter it = newTris.begin(); it != newTris.end(); it++)
    {
      myVec3 t1(xCoords[it->v1], yCoords[it->v1], zCoords[it->v1]);
      myVec3 t2(xCoords[it->v2], yCoords[it->v2], zCoords[it->v2]);
      myVec3 t3(xCoords[it->v3], yCoords[it->v3], zCoords[it->v3]);
      if(isInFront(barycenter, t1, getNorm(t1, t2, t3)))
      {
        //need to swap two vertices to flip orientation of triangle
        int temp = it->v1;
        myVec3 tempVec = t1;
        it->v1 = it->v2;
        t1 = t2;
        it->v2 = temp;
        t2 = tempVec;
      }
      myVec3 outwardNorm = getNorm(t1, t2, t3); //now definitely points outwards
      //Add the triangle to tris
      tris.push_back(*it);
      trisToProcess.push_back(tris.back());
      //Make a list of the points that are in front of nextToProcess, to be passed in for processing
      list<int> newInFront;
      for(Iter point = pointsInFront.begin(); point != pointsInFront.end();)
      {
        myVec3 pointVec(xCoords[*point], yCoords[*point], zCoords[*point]);
        if(isInFront(pointVec, t1, outwardNorm))
        {
          newInFront.push_back(*point);
          point = pointsInFront.erase(point);
        }
        else
          point++;
      }
      newFrontPoints.push_back(newInFront);
    }
    vector<myTriangle> allRemoved; //list of all invalid iterators that were erased by calls to processmyTriangle below
    for(int i = 0; i < int(trisToProcess.size()); i++)
    {
      if(!newFrontPoints[i].empty())
      {
        //Comparing the 'triangle to process' to the one for this call prevents infinite recursion/stack overflow.
        //TODO: Why was it doing that? Rounding error? Make more robust fix. But this does work for the time being.
        if(find(allRemoved.begin(), allRemoved.end(), trisToProcess[i]) == allRemoved.end() && !(trisToProcess[i] == tri))
        {
          vector<myTriangle> removedList = processTriangle(tris, trisToProcess[i], newFrontPoints[i], barycenter, xCoords, yCoords, zCoords);
          for(int j = 0; j < int(removedList.size()); j++)
            allRemoved.push_back(removedList[j]);
        }
      }
    }
    return visible;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::vector<int> VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::giftWrap(std::vector<myVec2>& points, std::vector<int>& nodes, const Teuchos::ArrayRCP<const double> & xCoords, const Teuchos::ArrayRCP<const double> & yCoords) {
    TEUCHOS_TEST_FOR_EXCEPTION(points.size() < 3, Exceptions::RuntimeError,
             "CoarseningVisualization::giftWrap: Gift wrap algorithm input has to have at least 3 points!");

#if 1 // TAW's version to determine "minimal" node
    // determine minimal x and y coordinates
    double min_x =points[0].x;
    double min_y =points[0].y;
    for(std::vector<int>::iterator it = nodes.begin(); it != nodes.end(); it++) {
      int i = it - nodes.begin();
      if(points[i].x < min_x) min_x = points[i].x;
      if(points[i].y < min_y) min_y = points[i].y;
    }
    // create dummy min coordinates
    min_x -= 1.0;
    min_y -= 1.0;
    myVec2 dummy_min(min_x, min_y);

    // loop over all nodes and determine nodes with minimal distance to (min_x, min_y)
    std::vector<int> hull;
    myVec2 min = points[0];
    double mindist = distance(min,dummy_min);
    std::vector<int>::iterator minNode = nodes.begin();
    for(std::vector<int>::iterator it = nodes.begin(); it != nodes.end(); it++) {
      int i = it - nodes.begin();
      if(distance(points[i],dummy_min) < mindist) {
        mindist = distance(points[i],dummy_min);
        min = points[i];
        minNode = it;
      }
    }
    hull.push_back(*minNode);
#else // Brian's code
    std::vector<int> hull;
    std::vector<int>::iterator minNode = nodes.begin();
    myVec2 min = points[0];
    for(std::vector<int>::iterator it = nodes.begin(); it != nodes.end(); it++)
    {
      int i = it - nodes.begin();
      if(points[i].x < min.x || (fabs(points[i].x - min.x) < 1e-10 && points[i].y < min.y))
      {
        min = points[i];
        minNode = it;
      }
    }
    hull.push_back(*minNode);
#endif

    bool includeMin = false;
    //int debug_it = 0;
    while(1)
    {
      std::vector<int>::iterator leftMost = nodes.begin();
      if(!includeMin && leftMost == minNode)
      {
        leftMost++;
      }
      std::vector<int>::iterator it = leftMost;
      it++;
      for(; it != nodes.end(); it++)
      {
        if(it == minNode && !includeMin) //don't compare to min on very first sweep
          continue;
        if(*it == hull.back())
          continue;
        //see if it is in front of line containing nodes thisHull.back() and leftMost
        //first get the left normal of leftMost - thisHull.back() (<dy, -dx>)
        myVec2 leftMostVec = points[leftMost - nodes.begin()];
        myVec2 lastVec(xCoords[hull.back()], yCoords[hull.back()]);
        myVec2 testNorm = getNorm(vecSubtract(leftMostVec, lastVec));
        //now dot testNorm with *it - leftMost. If dot is positive, leftMost becomes it. If dot is zero, take one further from thisHull.back().
        myVec2 itVec(xCoords[*it], yCoords[*it]);
        double dotProd = dotProduct(testNorm, vecSubtract(itVec, lastVec));
        if(-1e-8 < dotProd && dotProd < 1e-8)
        {
          //thisHull.back(), it and leftMost are collinear.
          //Just sum the differences in x and differences in y for each and compare to get further one, don't need distance formula
          myVec2 itDist = vecSubtract(itVec, lastVec);
          myVec2 leftMostDist = vecSubtract(leftMostVec, lastVec);
          if(fabs(itDist.x) + fabs(itDist.y) > fabs(leftMostDist.x) + fabs(leftMostDist.y)) {
            leftMost = it;
          }
        }
        else if(dotProd > 0) {
          leftMost = it;

        }
      }
      //if leftMost is min, then the loop is complete.
      if(*leftMost == *minNode)
        break;
      hull.push_back(*leftMost);
      includeMin = true; //have found second point (the one after min) so now include min in the searches
      //debug_it ++;
      //if(debug_it > 100) exit(0); //break;
    }
    return hull;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::vector<int> VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::makeUnique(std::vector<int>& vertices) const
  {
    using namespace std;
    vector<int> uniqueNodes = vertices;
    sort(uniqueNodes.begin(), uniqueNodes.end());
    vector<int>::iterator newUniqueFineEnd = unique(uniqueNodes.begin(), uniqueNodes.end());
    uniqueNodes.erase(newUniqueFineEnd, uniqueNodes.end());
    //uniqueNodes is now a sorted list of the nodes whose info actually goes in file
    //Now replace values in vertices with locations of the old values in uniqueFine
    for(int i = 0; i < int(vertices.size()); i++)
    {
      int lo = 0;
      int hi = uniqueNodes.size() - 1;
      int mid = 0;
      int search = vertices[i];
      while(lo <= hi)
      {
        mid = lo + (hi - lo) / 2;
        if(uniqueNodes[mid] == search)
          break;
        else if(uniqueNodes[mid] > search)
          hi = mid - 1;
        else
          lo = mid + 1;
      }
      if(uniqueNodes[mid] != search)
        throw runtime_error("Issue in makeUnique_() - a point wasn't found in list.");
      vertices[i] = mid;
    }
    return uniqueNodes;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::string VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::replaceAll(std::string result, const std::string& replaceWhat, const std::string& replaceWithWhat) const {
    while(1) {
      const int pos = result.find(replaceWhat);
      if (pos == -1)
        break;
      result.replace(pos, replaceWhat.size(), replaceWithWhat);
    }
    return result;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::string VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getFileName(int numProcs, int myRank, int level, const Teuchos::ParameterList & pL) const {
    std::string filenameToWrite = getBaseFileName(numProcs, level, pL);
    filenameToWrite = this->replaceAll(filenameToWrite, "%PROCID",   toString(myRank));
    return filenameToWrite;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::string VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getBaseFileName(int numProcs, int level, const Teuchos::ParameterList & pL) const {
    std::string filenameToWrite = pL.get<std::string>("visualization: output filename");
    int timeStep = pL.get<int>("visualization: output file: time step");
    int iter     = pL.get<int>("visualization: output file: iter");

    if(filenameToWrite.rfind(".vtu") == std::string::npos)
      filenameToWrite.append(".vtu");
    if(numProcs > 1 && filenameToWrite.rfind("%PROCID") == std::string::npos) //filename can't be identical between processsors in parallel problem
      filenameToWrite.insert(filenameToWrite.rfind(".vtu"), "-proc%PROCID");

    filenameToWrite = this->replaceAll(filenameToWrite, "%LEVELID",  toString(level));
    filenameToWrite = this->replaceAll(filenameToWrite, "%TIMESTEP", toString(timeStep));
    filenameToWrite = this->replaceAll(filenameToWrite, "%ITER",     toString(iter));
    return filenameToWrite;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::string VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getPVTUFileName(int numProcs, int myRank, int level, const Teuchos::ParameterList & pL) const {
    std::string filenameToWrite = getBaseFileName(numProcs, level, pL);
    std::string masterStem = filenameToWrite.substr(0, filenameToWrite.rfind(".vtu"));
    masterStem = this->replaceAll(masterStem, "%PROCID", "");
    std::string pvtuFilename = masterStem + "-master.pvtu";
    return pvtuFilename;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::writeFileVTKOpening(std::ofstream & fout, std::vector<int> & uniqueFine, std::vector<int> & geomSizesFine) const {
    std::string styleName = "PointCloud"; // TODO adapt this

    std::string indent = "      ";
    fout << "<!--" << styleName << " Aggregates Visualization-->" << std::endl;
    fout << "<VTKFile type=\"UnstructuredGrid\" byte_order=\"LittleEndian\">" << std::endl;
    fout << "  <UnstructuredGrid>" << std::endl;
    fout << "    <Piece NumberOfPoints=\"" << uniqueFine.size() << "\" NumberOfCells=\"" << geomSizesFine.size() << "\">" << std::endl;
    fout << "      <PointData Scalars=\"Node Aggregate Processor\">" << std::endl;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::writeFileVTKNodes(std::ofstream & fout, std::vector<int> & uniqueFine, Teuchos::RCP<const Map> & nodeMap) const {
    std::string indent = "      ";
    fout << "        <DataArray type=\"Int32\" Name=\"Node\" format=\"ascii\">" << std::endl;
    indent = "          ";
    bool localIsGlobal = GlobalOrdinal(nodeMap->getGlobalNumElements()) == GlobalOrdinal(nodeMap->getNodeNumElements());
    for(size_t i = 0; i < uniqueFine.size(); i++)
    {
      if(localIsGlobal)
      {
        fout << uniqueFine[i] << " "; //if all nodes are on this processor, do not map from local to global
      }
      else
        fout << nodeMap->getGlobalElement(uniqueFine[i]) << " ";
      if(i % 10 == 9)
        fout << std::endl << indent;
    }
    fout << std::endl;
    fout << "        </DataArray>" << std::endl;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::writeFileVTKData(std::ofstream & fout, std::vector<int> & uniqueFine, LocalOrdinal myAggOffset, ArrayRCP<LocalOrdinal> & vertex2AggId, int myRank) const {
    std::string indent = "          ";
    fout << "        <DataArray type=\"Int32\" Name=\"Aggregate\" format=\"ascii\">" << std::endl;
    fout << indent;
    for(int i = 0; i < int(uniqueFine.size()); i++)
    {
      fout << myAggOffset + vertex2AggId[uniqueFine[i]] << " ";
      if(i % 10 == 9)
        fout << std::endl << indent;
    }
    fout << std::endl;
    fout << "        </DataArray>" << std::endl;
    fout << "        <DataArray type=\"Int32\" Name=\"Processor\" format=\"ascii\">" << std::endl;
    fout << indent;
    for(int i = 0; i < int(uniqueFine.size()); i++)
    {
      fout << myRank << " ";
      if(i % 20 == 19)
        fout << std::endl << indent;
    }
    fout << std::endl;
    fout << "        </DataArray>" << std::endl;
    fout << "      </PointData>" << std::endl;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::writeFileVTKCoordinates(std::ofstream & fout, std::vector<int> & uniqueFine, Teuchos::ArrayRCP<const double> & fx, Teuchos::ArrayRCP<const double> & fy, Teuchos::ArrayRCP<const double> & fz, int dim) const {
    std::string indent = "      ";
    fout << "      <Points>" << std::endl;
    fout << "        <DataArray type=\"Float64\" NumberOfComponents=\"3\" format=\"ascii\">" << std::endl;
    fout << indent;
    for(int i = 0; i < int(uniqueFine.size()); i++)
    {
      fout << fx[uniqueFine[i]] << " " << fy[uniqueFine[i]] << " ";
      if(dim == 2)
        fout << "0 ";
      else
        fout << fz[uniqueFine[i]] << " ";
      if(i % 3 == 2)
        fout << std::endl << indent;
    }
    fout << std::endl;
    fout << "        </DataArray>" << std::endl;
    fout << "      </Points>" << std::endl;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::writeFileVTKCells(std::ofstream & fout, std::vector<int> & uniqueFine, std::vector<LocalOrdinal> & vertices, std::vector<LocalOrdinal> & geomSize) const {
    std::string indent = "      ";
    fout << "      <Cells>" << std::endl;
    fout << "        <DataArray type=\"Int32\" Name=\"connectivity\" format=\"ascii\">" << std::endl;
    fout << indent;
    for(int i = 0; i < int(vertices.size()); i++)
    {
      fout << vertices[i] << " ";
      if(i % 10 == 9)
        fout << std::endl << indent;
    }
    fout << std::endl;
    fout << "        </DataArray>" << std::endl;
    fout << "        <DataArray type=\"Int32\" Name=\"offsets\" format=\"ascii\">" << std::endl;
    fout << indent;
    int accum = 0;
    for(int i = 0; i < int(geomSize.size()); i++)
    {
      accum += geomSize[i];
      fout << accum << " ";
      if(i % 10 == 9)
        fout << std::endl << indent;
    }
    fout << std::endl;
    fout << "        </DataArray>" << std::endl;
    fout << "        <DataArray type=\"Int32\" Name=\"types\" format=\"ascii\">" << std::endl;
    fout << indent;
    for(int i = 0; i < int(geomSize.size()); i++)
    {
      switch(geomSize[i])
      {
        case 1:
          fout << "1 "; //Point
          break;
        case 2:
          fout << "3 "; //Line
          break;
        case 3:
          fout << "5 "; //Triangle
          break;
        default:
          fout << "7 "; //Polygon
      }
      if(i % 30 == 29)
        fout << std::endl << indent;
    }
    fout << std::endl;
    fout << "        </DataArray>" << std::endl;
    fout << "      </Cells>" << std::endl;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::writeFileVTKClosing(std::ofstream & fout) const {
    fout << "    </Piece>" << std::endl;
    fout << "  </UnstructuredGrid>" << std::endl;
    fout << "</VTKFile>" << std::endl;
  }


  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::writePVTU(std::ofstream& pvtu, std::string baseFname, int numProcs, bool bFineEdges, bool bCoarseEdges) const {
    //If using vtk, filenameToWrite now contains final, correct ***.vtu filename (for the current proc)
    //So the root proc will need to use its own filenameToWrite to make a list of the filenames of all other procs to put in
    //pvtu file.
    pvtu << "<VTKFile type=\"PUnstructuredGrid\" byte_order=\"LittleEndian\">" << std::endl;
    pvtu << "  <PUnstructuredGrid GhostLevel=\"0\">" << std::endl;
    pvtu << "    <PPointData Scalars=\"Node Aggregate Processor\">" << std::endl;
    pvtu << "      <PDataArray type=\"Int32\" Name=\"Node\"/>" << std::endl;
    pvtu << "      <PDataArray type=\"Int32\" Name=\"Aggregate\"/>" << std::endl;
    pvtu << "      <PDataArray type=\"Int32\" Name=\"Processor\"/>" << std::endl;
    pvtu << "    </PPointData>" << std::endl;
    pvtu << "    <PPoints>" << std::endl;
    pvtu << "      <PDataArray type=\"Float64\" NumberOfComponents=\"3\"/>" << std::endl;
    pvtu << "    </PPoints>" << std::endl;
    for(int i = 0; i < numProcs; i++) {
      //specify the piece for each proc (the replaceAll expression matches what the filenames will be on other procs)
      pvtu << "    <Piece Source=\"" << replaceAll(baseFname, "%PROCID", toString(i)) << "\"/>" << std::endl;
    }
    //reference files with graph pieces, if applicable
    if(bFineEdges)
    {
      for(int i = 0; i < numProcs; i++)
      {
        std::string fn = replaceAll(baseFname, "%PROCID", toString(i));
        pvtu << "    <Piece Source=\"" << fn.insert(fn.rfind(".vtu"), "-finegraph") << "\"/>" << std::endl;
      }
    }
    /*if(doCoarseGraphEdges_)
    {
      for(int i = 0; i < numProcs; i++)
      {
        std::string fn = replaceAll(baseFname, "%PROCID", toString(i));
        pvtu << "    <Piece Source=\"" << fn.insert(fn.rfind(".vtu"), "-coarsegraph") << "\"/>" << std::endl;
      }
    }*/
    pvtu << "  </PUnstructuredGrid>" << std::endl;
    pvtu << "</VTKFile>" << std::endl;
    pvtu.close();
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void VisualizationHelpers<Scalar, LocalOrdinal, GlobalOrdinal, Node>::buildColormap() const {
    try {
      std::ofstream color("random-colormap.xml");
      color << "<ColorMap name=\"MueLu-Random\" space=\"RGB\">" << std::endl;
      //Give -1, -2, -3 distinctive colors (so that the style functions can have constrasted geometry types)
      //Do red, orange, yellow to constrast with cool color spectrum for other types
      color << "  <Point x=\"" << -1 << "\" o=\"1\" r=\"1\" g=\"0\" b=\"0\"/>" << std::endl;
      color << "  <Point x=\"" << -2 << "\" o=\"1\" r=\"1\" g=\"0.6\" b=\"0\"/>" << std::endl;
      color << "  <Point x=\"" << -3 << "\" o=\"1\" r=\"1\" g=\"1\" b=\"0\"/>" << std::endl;
      srand(time(NULL));
      for(int i = 0; i < 5000; i += 4) {
        color << "  <Point x=\"" << i << "\" o=\"1\" r=\"" << (rand() % 50) / 256.0 << "\" g=\"" << (rand() % 256) / 256.0 << "\" b=\"" << (rand() % 256) / 256.0 << "\"/>" << std::endl;
      }
      color << "</ColorMap>" << std::endl;
      color.close();
    }
    catch(std::exception& e) {
      TEUCHOS_TEST_FOR_EXCEPTION(true, Exceptions::RuntimeError,
               "VisualizationHelpers::buildColormap: Error while building colormap file: " << e.what());
    }
  }

} // namespace MueLu

#endif /* MUELU_VISUALIZATIONHELPERS_DEF_HPP_ */