/usr/include/trilinos/MueLu_UtilitiesBase_decl.hpp is in libtrilinos-muelu-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | // @HEADER
//
// ***********************************************************************
//
// MueLu: A package for multigrid based preconditioning
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jonathan Hu (jhu@sandia.gov)
// Andrey Prokopenko (aprokop@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef MUELU_UTILITIESBASE_DECL_HPP
#define MUELU_UTILITIESBASE_DECL_HPP
#include <unistd.h> //necessary for "sleep" function in debugging methods
#include <string>
#include "MueLu_ConfigDefs.hpp"
#include <Teuchos_DefaultComm.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Xpetra_BlockedCrsMatrix_fwd.hpp>
#include <Xpetra_CrsMatrix_fwd.hpp>
#include <Xpetra_CrsMatrixWrap_fwd.hpp>
#include <Xpetra_Map_fwd.hpp>
#include <Xpetra_MapFactory_fwd.hpp>
#include <Xpetra_Matrix_fwd.hpp>
#include <Xpetra_MatrixFactory_fwd.hpp>
#include <Xpetra_MultiVector_fwd.hpp>
#include <Xpetra_MultiVectorFactory_fwd.hpp>
#include <Xpetra_Operator_fwd.hpp>
#include <Xpetra_Vector_fwd.hpp>
#include <Xpetra_VectorFactory_fwd.hpp>
#include <Xpetra_ExportFactory.hpp>
#include <Xpetra_Import.hpp>
#include <Xpetra_ImportFactory.hpp>
#include <Xpetra_MatrixMatrix.hpp>
#include <Xpetra_CrsMatrixWrap.hpp>
#include "MueLu_Exceptions.hpp"
namespace MueLu {
// MPI helpers
#define MueLu_sumAll(rcpComm, in, out) \
Teuchos::reduceAll(*rcpComm, Teuchos::REDUCE_SUM, in, Teuchos::outArg(out))
#define MueLu_minAll(rcpComm, in, out) \
Teuchos::reduceAll(*rcpComm, Teuchos::REDUCE_MIN, in, Teuchos::outArg(out))
#define MueLu_maxAll(rcpComm, in, out) \
Teuchos::reduceAll(*rcpComm, Teuchos::REDUCE_MAX, in, Teuchos::outArg(out))
/*!
@class Utilities
@brief MueLu utility class.
This class provides a number of static helper methods. Some are temporary and will eventually
go away, while others should be moved to Xpetra.
*/
template <class Scalar,
class LocalOrdinal = int,
class GlobalOrdinal = LocalOrdinal,
class Node = KokkosClassic::DefaultNode::DefaultNodeType>
class UtilitiesBase {
public:
#undef MUELU_UTILITIESBASE_SHORT
//#include "MueLu_UseShortNames.hpp"
private:
typedef Xpetra::CrsMatrixWrap<Scalar,LocalOrdinal,GlobalOrdinal,Node> CrsMatrixWrap;
typedef Xpetra::CrsMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> CrsMatrix;
typedef Xpetra::Matrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> Matrix;
typedef Xpetra::Vector<Scalar,LocalOrdinal,GlobalOrdinal,Node> Vector;
typedef Xpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> MultiVector;
typedef Xpetra::Map<LocalOrdinal,GlobalOrdinal,Node> Map;
public:
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType Magnitude;
static RCP<Matrix> Crs2Op(RCP<CrsMatrix> Op) {
if (Op.is_null())
return Teuchos::null;
return rcp(new CrsMatrixWrap(Op));
}
/*! @brief Extract Matrix Diagonal
Returns Matrix diagonal in ArrayRCP.
NOTE -- it's assumed that A has been fillComplete'd.
*/
static Teuchos::ArrayRCP<Scalar> GetMatrixDiagonal(const Matrix& A) {
size_t numRows = A.getRowMap()->getNodeNumElements();
Teuchos::ArrayRCP<Scalar> diag(numRows);
Teuchos::ArrayView<const LocalOrdinal> cols;
Teuchos::ArrayView<const Scalar> vals;
for (size_t i = 0; i < numRows; ++i) {
A.getLocalRowView(i, cols, vals);
LocalOrdinal j = 0;
for (; j < cols.size(); ++j) {
if (Teuchos::as<size_t>(cols[j]) == i) {
diag[i] = vals[j];
break;
}
}
if (j == cols.size()) {
// Diagonal entry is absent
diag[i] = Teuchos::ScalarTraits<Scalar>::zero();
}
}
return diag;
}
/*! @brief Extract Matrix Diagonal
Returns inverse of the Matrix diagonal in ArrayRCP.
NOTE -- it's assumed that A has been fillComplete'd.
*/
static RCP<Vector> GetMatrixDiagonalInverse(const Matrix& A, Magnitude tol = Teuchos::ScalarTraits<Scalar>::eps()*100) {
RCP<const Matrix> rcpA = Teuchos::rcpFromRef(A);
RCP<const Map> rowMap = rcpA->getRowMap();
RCP<Vector> diag = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(rowMap,true);
rcpA->getLocalDiagCopy(*diag);
RCP<Vector> inv = MueLu::UtilitiesBase<Scalar,LocalOrdinal,GlobalOrdinal,Node>::GetInverse(diag, tol, Teuchos::ScalarTraits<Scalar>::zero());
return inv;
}
/*! @brief Extract Matrix Diagonal of lumped matrix
Returns Matrix diagonal of lumped matrix in ArrayRCP.
NOTE -- it's assumed that A has been fillComplete'd.
*/
static Teuchos::ArrayRCP<Scalar> GetLumpedMatrixDiagonal(const Matrix& A) {
size_t numRows = A.getRowMap()->getNodeNumElements();
Teuchos::ArrayRCP<Scalar> diag(numRows);
Teuchos::ArrayView<const LocalOrdinal> cols;
Teuchos::ArrayView<const Scalar> vals;
for (size_t i = 0; i < numRows; ++i) {
A.getLocalRowView(i, cols, vals);
diag[i] = Teuchos::ScalarTraits<Scalar>::zero();
for (LocalOrdinal j = 0; j < cols.size(); ++j) {
diag[i] += Teuchos::ScalarTraits<Scalar>::magnitude(vals[j]);
}
}
return diag;
}
/*! @brief Extract Matrix Diagonal of lumped matrix
Returns Matrix diagonal of lumped matrix in ArrayRCP.
NOTE -- it's assumed that A has been fillComplete'd.
*/
static Teuchos::RCP<Vector> GetLumpedMatrixDiagonal(Teuchos::RCP<const Matrix> rcpA) {
RCP<Vector> diag = Teuchos::null;
RCP<const Xpetra::BlockedCrsMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> > bA =
Teuchos::rcp_dynamic_cast<const Xpetra::BlockedCrsMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> >(rcpA);
if(bA == Teuchos::null) {
RCP<const Map> rowMap = rcpA->getRowMap();
diag = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(rowMap,true);
ArrayRCP<Scalar> diagVals = diag->getDataNonConst(0);
Teuchos::ArrayView<const LocalOrdinal> cols;
Teuchos::ArrayView<const Scalar> vals;
for (size_t i = 0; i < rowMap->getNodeNumElements(); ++i) {
rcpA->getLocalRowView(i, cols, vals);
diagVals[i] = Teuchos::ScalarTraits<Scalar>::zero();
for (LocalOrdinal j = 0; j < cols.size(); ++j) {
diagVals[i] += Teuchos::ScalarTraits<Scalar>::magnitude(vals[j]);
}
}
} else {
//TEUCHOS_TEST_FOR_EXCEPTION(bA->Rows() != bA->Cols(), Xpetra::Exceptions::RuntimeError,
// "UtilitiesBase::GetLumpedMatrixDiagonal(): you cannot extract the diagonal of a "<< bA->Rows() << "x"<< bA->Cols() << " blocked matrix." );
diag = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(bA->getRangeMapExtractor()->getFullMap(),true);
for (size_t row = 0; row < bA->Rows(); ++row) {
for (size_t col = 0; col < bA->Cols(); ++col) {
if (!bA->getMatrix(row,col).is_null()) {
// if we are in Thyra mode, but the block (row,row) is again a blocked operator, we have to use (pseudo) Xpetra-style GIDs with offset!
bool bThyraMode = bA->getRangeMapExtractor()->getThyraMode() && (Teuchos::rcp_dynamic_cast<Xpetra::BlockedCrsMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> >(bA->getMatrix(row,col)) == Teuchos::null);
RCP<Vector> ddtemp = bA->getRangeMapExtractor()->ExtractVector(diag,row,bThyraMode);
RCP<const Vector> dd = GetLumpedMatrixDiagonal(bA->getMatrix(row,col));
ddtemp->update(Teuchos::as<Scalar>(1.0),*dd,Teuchos::as<Scalar>(1.0));
bA->getRangeMapExtractor()->InsertVector(ddtemp,row,diag,bThyraMode);
}
}
}
}
// we should never get here...
return diag;
}
/*! @brief Return vector containing inverse of input vector
*
* @param[in] v: input vector
* @param[in] tol: tolerance. If entries of input vector are smaller than tolerance they are replaced by tolReplacement (see below). The default value for tol is 100*eps (machine precision)
* @param[in] tolReplacement: Value put in for undefined entries in output vector (default: 0.0)
* @ret: vector containing inverse values of input vector v
*/
static Teuchos::RCP<Vector> GetInverse(Teuchos::RCP<const Vector> v, Magnitude tol = Teuchos::ScalarTraits<Scalar>::eps()*100, Scalar tolReplacement = Teuchos::ScalarTraits<Scalar>::zero()) {
RCP<Vector> ret = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(v->getMap(),true);
ArrayRCP<Scalar> retVals = ret->getDataNonConst(0);
ArrayRCP<const Scalar> inputVals = v->getData(0);
for (size_t i = 0; i < v->getMap()->getNodeNumElements(); ++i) {
if(Teuchos::ScalarTraits<Scalar>::magnitude(inputVals[i]) > tol)
retVals[i] = Teuchos::ScalarTraits<Scalar>::one() / inputVals[i];
else
retVals[i] = tolReplacement;
}
return ret;
}
/*! @brief Extract Overlapped Matrix Diagonal
Returns overlapped Matrix diagonal in ArrayRCP.
The local overlapped diagonal has an entry for each index in A's column map.
NOTE -- it's assumed that A has been fillComplete'd.
*/
static RCP<Vector> GetMatrixOverlappedDiagonal(const Matrix& A) {
RCP<const Map> rowMap = A.getRowMap(), colMap = A.getColMap();
RCP<Vector> localDiag = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(rowMap);
try {
const CrsMatrixWrap* crsOp = dynamic_cast<const CrsMatrixWrap*>(&A);
if (crsOp == NULL) {
throw Exceptions::RuntimeError("cast to CrsMatrixWrap failed");
}
Teuchos::ArrayRCP<size_t> offsets;
crsOp->getLocalDiagOffsets(offsets);
crsOp->getLocalDiagCopy(*localDiag,offsets());
}
catch (...) {
ArrayRCP<Scalar> localDiagVals = localDiag->getDataNonConst(0);
Teuchos::ArrayRCP<Scalar> diagVals = GetMatrixDiagonal(A);
for (LocalOrdinal i = 0; i < localDiagVals.size(); i++)
localDiagVals[i] = diagVals[i];
localDiagVals = diagVals = null;
}
RCP<Vector> diagonal = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(colMap);
RCP< const Xpetra::Import<LocalOrdinal,GlobalOrdinal,Node> > importer;
importer = A.getCrsGraph()->getImporter();
if (importer == Teuchos::null) {
importer = Xpetra::ImportFactory<LocalOrdinal,GlobalOrdinal,Node>::Build(rowMap, colMap);
}
diagonal->doImport(*localDiag, *(importer), Xpetra::INSERT);
return diagonal;
}
// TODO: should NOT return an Array. Definition must be changed to:
// - ArrayRCP<> ResidualNorm(Matrix const &Op, MultiVector const &X, MultiVector const &RHS)
// or
// - void ResidualNorm(Matrix const &Op, MultiVector const &X, MultiVector const &RHS, Array &)
static Teuchos::Array<Magnitude> ResidualNorm(const Xpetra::Operator<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Op, const MultiVector& X, const MultiVector& RHS) {
TEUCHOS_TEST_FOR_EXCEPTION(X.getNumVectors() != RHS.getNumVectors(), Exceptions::RuntimeError, "Number of solution vectors != number of right-hand sides")
const size_t numVecs = X.getNumVectors();
RCP<MultiVector> RES = Residual(Op, X, RHS);
Teuchos::Array<Magnitude> norms(numVecs);
RES->norm2(norms);
return norms;
}
static RCP<MultiVector> Residual(const Xpetra::Operator<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Op, const MultiVector& X, const MultiVector& RHS) {
TEUCHOS_TEST_FOR_EXCEPTION(X.getNumVectors() != RHS.getNumVectors(), Exceptions::RuntimeError, "Number of solution vectors != number of right-hand sides")
const size_t numVecs = X.getNumVectors();
Scalar one = Teuchos::ScalarTraits<Scalar>::one(), negone = -one, zero = Teuchos::ScalarTraits<Scalar>::zero();
RCP<MultiVector> RES = Xpetra::MultiVectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(Op.getRangeMap(), numVecs, false); // no need to initialize to zero
Op.apply(X, *RES, Teuchos::NO_TRANS, one, zero);
RES->update(one, RHS, negone);
return RES;
}
#ifndef _WIN32
#include <unistd.h>
static void PauseForDebugger() {
RCP<const Teuchos::Comm<int> > comm = Teuchos::DefaultComm<int>::getComm();
int myPID = comm->getRank();
int pid = getpid();
char hostname[80];
for (int i = 0; i <comm->getSize(); i++) {
if (i == myPID) {
gethostname(hostname, sizeof(hostname));
std::cout << "Host: " << hostname << "\tMPI rank: " << myPID << ",\tPID: " << pid << "\n\tattach " << pid << std::endl;
sleep(1);
}
}
if (myPID == 0) {
std::cout << "** Enter a character to continue > " << std::endl;
char go = ' ';
int r = scanf("%c", &go);
(void)r;
assert(r > 0);
}
comm->barrier();
}
#else
static void PauseForDebugger() {
throw(Exceptions::RuntimeError("MueLu Utils: PauseForDebugger not implemented on Windows."));
}
#endif
/*! @brief Simple transpose for Tpetra::CrsMatrix types
Note: This is very inefficient, as it inserts one entry at a time.
*/
/*! @brief Power method.
@param A matrix
@param scaleByDiag if true, estimate the largest eigenvalue of \f$ D^; A \f$.
@param niters maximum number of iterations
@param tolerance stopping tolerance
@verbose if true, print iteration information
(Shamelessly grabbed from tpetra/examples.)
*/
static Scalar PowerMethod(const Matrix& A, bool scaleByDiag = true,
LocalOrdinal niters = 10, Magnitude tolerance = 1e-2, bool verbose = false, unsigned int seed = 123) {
TEUCHOS_TEST_FOR_EXCEPTION(!(A.getRangeMap()->isSameAs(*(A.getDomainMap()))), Exceptions::Incompatible,
"Utils::PowerMethod: operator must have domain and range maps that are equivalent.");
// Create three vectors, fill z with random numbers
RCP<Vector> q = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(A.getDomainMap());
RCP<Vector> r = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(A.getRangeMap());
RCP<Vector> z = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(A.getRangeMap());
z->setSeed(seed); // seed random number generator
z->randomize(true);// use Xpetra implementation: -> same results for Epetra and Tpetra
Teuchos::Array<Magnitude> norms(1);
typedef Teuchos::ScalarTraits<Scalar> STS;
const Scalar zero = STS::zero(), one = STS::one();
Scalar lambda = zero;
Magnitude residual = STS::magnitude(zero);
// power iteration
RCP<Vector> diagInvVec;
if (scaleByDiag) {
RCP<Vector> diagVec = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(A.getRowMap());
A.getLocalDiagCopy(*diagVec);
diagInvVec = Xpetra::VectorFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>::Build(A.getRowMap());
diagInvVec->reciprocal(*diagVec);
}
for (int iter = 0; iter < niters; ++iter) {
z->norm2(norms); // Compute 2-norm of z
q->update(one/norms[0], *z, zero); // Set q = z / normz
A.apply(*q, *z); // Compute z = A*q
if (scaleByDiag)
z->elementWiseMultiply(one, *diagInvVec, *z, zero);
lambda = q->dot(*z); // Approximate maximum eigenvalue: lamba = dot(q,z)
if (iter % 100 == 0 || iter + 1 == niters) {
r->update(1.0, *z, -lambda, *q, zero); // Compute A*q - lambda*q
r->norm2(norms);
residual = STS::magnitude(norms[0] / lambda);
if (verbose) {
std::cout << "Iter = " << iter
<< " Lambda = " << lambda
<< " Residual of A*q - lambda*q = " << residual
<< std::endl;
}
}
if (residual < tolerance)
break;
}
return lambda;
}
static RCP<Teuchos::FancyOStream> MakeFancy(std::ostream& os) {
RCP<Teuchos::FancyOStream> fancy = Teuchos::fancyOStream(Teuchos::rcpFromRef(os));
return fancy;
}
/*! @brief Squared distance between two rows in a multivector
Used for coordinate vectors.
*/
static typename Teuchos::ScalarTraits<Scalar>::magnitudeType Distance2(const Xpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& v, LocalOrdinal i0, LocalOrdinal i1) {
size_t numVectors = v.getNumVectors();
Scalar d = Teuchos::ScalarTraits<Scalar>::zero();
for (size_t j = 0; j < numVectors; j++) {
Teuchos::ArrayRCP<const Scalar> vv = v.getData(j);
d += (vv[i0] - vv[i1])*(vv[i0] - vv[i1]);
}
return Teuchos::ScalarTraits<Scalar>::magnitude(d);
}
/*! @brief Detect Dirichlet rows
@param[in] A matrix
@param[in] tol If a row entry's magnitude is less than or equal to this tolerance, the entry is treated as zero.
@return boolean array. The ith entry is true iff row i is a Dirichlet row.
*/
static Teuchos::ArrayRCP<const bool> DetectDirichletRows(const Xpetra::Matrix<Scalar,LocalOrdinal,GlobalOrdinal,Node>& A, const Magnitude& tol = Teuchos::ScalarTraits<Scalar>::zero()) {
LocalOrdinal numRows = A.getNodeNumRows();
typedef Teuchos::ScalarTraits<Scalar> STS;
ArrayRCP<bool> boundaryNodes(numRows, true);
for (LocalOrdinal row = 0; row < numRows; row++) {
ArrayView<const LocalOrdinal> indices;
ArrayView<const Scalar> vals;
A.getLocalRowView(row, indices, vals);
size_t nnz = A.getNumEntriesInLocalRow(row);
if (nnz > 1)
for (size_t col = 0; col < nnz; col++)
if ( (indices[col] != row) && STS::magnitude(vals[col]) > tol) {
boundaryNodes[row] = false;
break;
}
}
return boundaryNodes;
}
/*! @brief Frobenius inner product of two matrices
Used in energy minimization algorithms
*/
static Scalar Frobenius(const Xpetra::Matrix<Scalar,LocalOrdinal,GlobalOrdinal,Node>& A, const Xpetra::Matrix<Scalar,LocalOrdinal,GlobalOrdinal,Node>& B) {
// We check only row maps. Column may be different. One would hope that they are the same, as we typically
// calculate frobenius norm of the specified sparsity pattern with an updated matrix from the previous step,
// but matrix addition, even when one is submatrix of the other, changes column map (though change may be as
// simple as couple of elements swapped)
TEUCHOS_TEST_FOR_EXCEPTION(!A.getRowMap()->isSameAs(*B.getRowMap()), Exceptions::Incompatible, "MueLu::CGSolver::Frobenius: row maps are incompatible");
TEUCHOS_TEST_FOR_EXCEPTION(!A.isFillComplete() || !B.isFillComplete(), Exceptions::RuntimeError, "Matrices must be fill completed");
const Map& AColMap = *A.getColMap();
const Map& BColMap = *B.getColMap();
Teuchos::ArrayView<const LocalOrdinal> indA, indB;
Teuchos::ArrayView<const Scalar> valA, valB;
size_t nnzA = 0, nnzB = 0;
// We use a simple algorithm
// for each row we fill valBAll array with the values in the corresponding row of B
// as such, it serves as both sorted array and as storage, so we don't need to do a
// tricky problem: "find a value in the row of B corresponding to the specific GID"
// Once we do that, we translate LID of entries of row of A to LID of B, and multiply
// corresponding entries.
// The algorithm should be reasonably cheap, as it does not sort anything, provided
// that getLocalElement and getGlobalElement functions are reasonably effective. It
// *is* possible that the costs are hidden in those functions, but if maps are close
// to linear maps, we should be fine
Teuchos::Array<Scalar> valBAll(BColMap.getNodeNumElements());
LocalOrdinal invalid = Teuchos::OrdinalTraits<LocalOrdinal>::invalid();
Scalar zero = Teuchos::ScalarTraits<Scalar> ::zero(), f = zero, gf;
size_t numRows = A.getNodeNumRows();
for (size_t i = 0; i < numRows; i++) {
A.getLocalRowView(i, indA, valA);
B.getLocalRowView(i, indB, valB);
nnzA = indA.size();
nnzB = indB.size();
// Set up array values
for (size_t j = 0; j < nnzB; j++)
valBAll[indB[j]] = valB[j];
for (size_t j = 0; j < nnzA; j++) {
// The cost of the whole Frobenius dot product function depends on the
// cost of the getLocalElement and getGlobalElement functions here.
LocalOrdinal ind = BColMap.getLocalElement(AColMap.getGlobalElement(indA[j]));
if (ind != invalid)
f += valBAll[ind] * valA[j];
}
// Clean up array values
for (size_t j = 0; j < nnzB; j++)
valBAll[indB[j]] = zero;
}
MueLu_sumAll(AColMap.getComm(), f, gf);
return gf;
}
/*! @brief Set seed for random number generator.
Distribute the seeds evenly in [1,INT_MAX-1]. This guarantees nothing
about where random number streams on difference processes will intersect.
This does avoid overflow situations in parallel when multiplying by a PID.
It also avoids the pathological case of having the *same* random number stream
on each process.
*/
static void SetRandomSeed(const Teuchos::Comm<int> &comm) {
// Distribute the seeds evenly in [1,maxint-1]. This guarantees nothing
// about where in random number stream we are, but avoids overflow situations
// in parallel when multiplying by a PID. It would be better to use
// a good parallel random number generator.
double one = 1.0;
int maxint = INT_MAX; //= 2^31-1 = 2147483647 for 32-bit integers
int mySeed = Teuchos::as<int>((maxint-1) * (one -(comm.getRank()+1)/(comm.getSize()+one)) );
if (mySeed < 1 || mySeed == maxint) {
std::ostringstream errStr;
errStr << "Error detected with random seed = " << mySeed << ". It should be in the interval [1,2^31-2].";
throw Exceptions::RuntimeError(errStr.str());
}
std::srand(mySeed);
// For Tpetra, we could use Kokkos' random number generator here.
Teuchos::ScalarTraits<Scalar>::seedrandom(mySeed);
// Epetra
// MultiVector::Random() -> Epetra_Util::RandomDouble() -> Epetra_Utils::RandomInt()
// Its own random number generator, based on Seed_. Seed_ is initialized in Epetra_Util constructor with std::rand()
// So our setting std::srand() affects that too
}
}; // class Utils
///////////////////////////////////////////
} //namespace MueLu
#define MUELU_UTILITIESBASE_SHORT
#endif // MUELU_UTILITIESBASE_DECL_HPP
|