/usr/include/trilinos/MueLu_Hierarchy_def.hpp is in libtrilinos-muelu-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 | // @HEADER
//
// ***********************************************************************
//
// MueLu: A package for multigrid based preconditioning
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jonathan Hu (jhu@sandia.gov)
// Andrey Prokopenko (aprokop@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef MUELU_HIERARCHY_DEF_HPP
#define MUELU_HIERARCHY_DEF_HPP
#include <time.h>
#include <algorithm>
#include <sstream>
#include <Xpetra_Matrix.hpp>
#include <Xpetra_MultiVectorFactory.hpp>
#include <Xpetra_Operator.hpp>
#include <Xpetra_IO.hpp>
#include "MueLu_Hierarchy_decl.hpp"
#include "MueLu_BoostGraphviz.hpp"
#include "MueLu_FactoryManager.hpp"
#include "MueLu_HierarchyUtils.hpp"
#include "MueLu_TopRAPFactory.hpp"
#include "MueLu_TopSmootherFactory.hpp"
#include "MueLu_Level.hpp"
#include "MueLu_Monitor.hpp"
#include "MueLu_PFactory.hpp"
#include "MueLu_SmootherFactoryBase.hpp"
#include "MueLu_SmootherFactory.hpp"
#include "MueLu_SmootherBase.hpp"
#include "Teuchos_TimeMonitor.hpp"
namespace MueLu {
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Hierarchy()
: maxCoarseSize_(GetDefaultMaxCoarseSize()), implicitTranspose_(GetDefaultImplicitTranspose()),
doPRrebalance_(GetDefaultPRrebalance()), isPreconditioner_(true), Cycle_(GetDefaultCycle()),
lib_(Xpetra::UseTpetra), isDumpingEnabled_(false), dumpLevel_(-1), rate_(-1)
{
AddLevel(rcp(new Level));
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Hierarchy(const RCP<Matrix>& A)
: maxCoarseSize_(GetDefaultMaxCoarseSize()), implicitTranspose_(GetDefaultImplicitTranspose()),
doPRrebalance_(GetDefaultPRrebalance()), isPreconditioner_(true), Cycle_(GetDefaultCycle()),
isDumpingEnabled_(false), dumpLevel_(-1), rate_(-1)
{
lib_ = A->getDomainMap()->lib();
RCP<Level> Finest = rcp(new Level);
AddLevel(Finest);
Finest->Set("A", A);
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::AddLevel(const RCP<Level>& level) {
int levelID = LastLevelID() + 1; // ID of the inserted level
if (level->GetLevelID() != -1 && (level->GetLevelID() != levelID))
GetOStream(Warnings1) << "Hierarchy::AddLevel(): Level with ID=" << level->GetLevelID() <<
" have been added at the end of the hierarchy\n but its ID have been redefined" <<
" because last level ID of the hierarchy was " << LastLevelID() << "." << std::endl;
Levels_.push_back(level);
level->SetLevelID(levelID);
level->setlib(lib_);
level->SetPreviousLevel( (levelID == 0) ? Teuchos::null : Levels_[LastLevelID() - 1] );
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::AddNewLevel() {
RCP<Level> newLevel = Levels_[LastLevelID()]->Build(); // new coarse level, using copy constructor
newLevel->setlib(lib_);
this->AddLevel(newLevel); // add to hierarchy
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
RCP<Level> & Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetLevel(const int levelID) {
TEUCHOS_TEST_FOR_EXCEPTION(levelID < 0 || levelID > LastLevelID(), Exceptions::RuntimeError,
"MueLu::Hierarchy::GetLevel(): invalid input parameter value: LevelID = " << levelID);
return Levels_[levelID];
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
int Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetNumLevels() const {
return Levels_.size();
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
int Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetGlobalNumLevels() const {
RCP<Operator> A = Levels_[0]->template Get<RCP<Operator> >("A");
RCP<const Teuchos::Comm<int> > comm = A->getDomainMap()->getComm();
int numLevels = GetNumLevels();
int numGlobalLevels;
Teuchos::reduceAll(*comm, Teuchos::REDUCE_MAX, numLevels, Teuchos::ptr(&numGlobalLevels));
return numGlobalLevels;
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
double Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetOperatorComplexity() const {
double totalNnz = 0, lev0Nnz = 1;
for (int i = 0; i < GetNumLevels(); ++i) {
TEUCHOS_TEST_FOR_EXCEPTION(!(Levels_[i]->IsAvailable("A")) , Exceptions::RuntimeError,
"Operator complexity cannot be calculated because A is unavailable on level " << i);
RCP<Operator> A = Levels_[i]->template Get<RCP<Operator> >("A");
if (A.is_null())
break;
RCP<Matrix> Am = rcp_dynamic_cast<Matrix>(A);
if (Am.is_null()) {
GetOStream(Warnings0) << "Some level operators are not matrices, operator complexity calculation aborted" << std::endl;
return 0.0;
}
totalNnz += as<double>(Am->getGlobalNumEntries());
if (i == 0)
lev0Nnz = totalNnz;
}
return totalNnz / lev0Nnz;
}
// Coherence checks todo in Setup() (using an helper function):
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::CheckLevel(Level& level, int levelID) {
TEUCHOS_TEST_FOR_EXCEPTION(level.lib() != lib_, Exceptions::RuntimeError,
"MueLu::Hierarchy::CheckLevel(): wrong underlying linear algebra library.");
TEUCHOS_TEST_FOR_EXCEPTION(level.GetLevelID() != levelID, Exceptions::RuntimeError,
"MueLu::Hierarchy::CheckLevel(): wrong level ID");
TEUCHOS_TEST_FOR_EXCEPTION(levelID != 0 && level.GetPreviousLevel() != Levels_[levelID-1], Exceptions::RuntimeError,
"MueLu::Hierarchy::Setup(): wrong level parent");
}
// The function uses three managers: fine, coarse and next coarse
// We construct the data for the coarse level, and do requests for the next coarse
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
bool Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Setup(int coarseLevelID,
const RCP<const FactoryManagerBase> fineLevelManager,
const RCP<const FactoryManagerBase> coarseLevelManager,
const RCP<const FactoryManagerBase> nextLevelManager) {
// Use PrintMonitor/TimerMonitor instead of just a FactoryMonitor to print "Level 0" instead of Hierarchy(0)
// Print is done after the requests for next coarse level
TimeMonitor m1(*this, this->ShortClassName() + ": " + "Setup (total)");
TimeMonitor m2(*this, this->ShortClassName() + ": " + "Setup" + " (total, level=" + Teuchos::toString(coarseLevelID) + ")");
// TODO: pass coarseLevelManager by reference
TEUCHOS_TEST_FOR_EXCEPTION(coarseLevelManager == Teuchos::null, Exceptions::RuntimeError,
"MueLu::Hierarchy::Setup(): argument coarseLevelManager cannot be null");
typedef MueLu::TopRAPFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node> TopRAPFactory;
typedef MueLu::TopSmootherFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node> TopSmootherFactory;
TEUCHOS_TEST_FOR_EXCEPTION(LastLevelID() < coarseLevelID, Exceptions::RuntimeError,
"MueLu::Hierarchy:Setup(): level " << coarseLevelID << " (specified by coarseLevelID argument) "
"must be built before calling this function.");
Level& level = *Levels_[coarseLevelID];
if (levelManagers_.size() < coarseLevelID+1)
levelManagers_.resize(coarseLevelID+1);
levelManagers_[coarseLevelID] = coarseLevelManager;
bool isFinestLevel = (fineLevelManager.is_null());
bool isLastLevel = (nextLevelManager.is_null());
int oldRank = -1;
if (isFinestLevel) {
RCP<Operator> A = level.Get< RCP<Operator> >("A");
RCP<const Map> domainMap = A->getDomainMap();
RCP<const Teuchos::Comm<int> > comm = domainMap->getComm();
// Initialize random seed for reproducibility
Utilities::SetRandomSeed(*comm);
// Record the communicator on the level (used for timers sync)
level.SetComm(comm);
oldRank = SetProcRankVerbose(comm->getRank());
// Set the Hierarchy library to match that of the finest level matrix,
// even if it was already set
lib_ = domainMap->lib();
level.setlib(lib_);
} else {
// Permeate library to a coarser level
level.setlib(lib_);
Level& prevLevel = *Levels_[coarseLevelID-1];
oldRank = SetProcRankVerbose(prevLevel.GetComm()->getRank());
}
CheckLevel(level, coarseLevelID);
// Attach FactoryManager to the fine level
RCP<SetFactoryManager> SFMFine;
if (!isFinestLevel)
SFMFine = rcp(new SetFactoryManager(Levels_[coarseLevelID-1], fineLevelManager));
if (isFinestLevel && Levels_[coarseLevelID]->IsAvailable("Coordinates"))
ReplaceCoordinateMap(*Levels_[coarseLevelID]);
// Attach FactoryManager to the coarse level
SetFactoryManager SFMCoarse(Levels_[coarseLevelID], coarseLevelManager);
if (isDumpingEnabled_ && dumpLevel_ == 0 && coarseLevelID == 1)
DumpCurrentGraph();
RCP<TopSmootherFactory> coarseFact = rcp(new TopSmootherFactory(coarseLevelManager, "CoarseSolver"));
RCP<TopSmootherFactory> smootherFact = rcp(new TopSmootherFactory(coarseLevelManager, "Smoother"));
int nextLevelID = coarseLevelID + 1;
RCP<SetFactoryManager> SFMNext;
if (isLastLevel == false) {
// We are not at the coarsest level, so there is going to be another level ("next coarse") after this one ("coarse")
if (nextLevelID > LastLevelID())
AddNewLevel();
CheckLevel(*Levels_[nextLevelID], nextLevelID);
// Attach FactoryManager to the next level (level after coarse)
SFMNext = rcp(new SetFactoryManager(Levels_[nextLevelID], nextLevelManager));
Levels_[nextLevelID]->Request(TopRAPFactory(coarseLevelManager, nextLevelManager));
// Do smoother requests here. We don't know whether this is going to be
// the coarsest level or not, but we need to DeclareInput before we call
// coarseRAPFactory.Build(), otherwise some stuff may be erased after
// level releases
level.Request(*smootherFact);
} else {
// Similar to smoother above, do the coarse solver request here. We don't
// know whether this is going to be the coarsest level or not, but we
// need to DeclareInput before we call coarseRAPFactory.Build(),
// otherwise some stuff may be erased after level releases. This is
// actually evident on ProjectorSmoother. It requires both "A" and
// "Nullspace". However, "Nullspace" is erased after all releases, so if
// we call the coarse factory request after RAP build we would not have
// any data, and cannot get it as we don't have previous managers. The
// typical trace looks like this:
//
// MueLu::Level(0)::GetFactory(Aggregates, 0): No FactoryManager
// during request for data " Aggregates" on level 0 by factory TentativePFactory
// during request for data " P" on level 1 by factory EminPFactory
// during request for data " P" on level 1 by factory TransPFactory
// during request for data " R" on level 1 by factory RAPFactory
// during request for data " A" on level 1 by factory TentativePFactory
// during request for data " Nullspace" on level 2 by factory NullspaceFactory
// during request for data " Nullspace" on level 2 by factory NullspacePresmoothFactory
// during request for data " Nullspace" on level 2 by factory ProjectorSmoother
// during request for data " PreSmoother" on level 2 by factory NoFactory
level.Request(*coarseFact);
}
PrintMonitor m0(*this, "Level " + Teuchos::toString(coarseLevelID), static_cast<MsgType>(Runtime0 | Test));
// Build coarse level hierarchy
RCP<Operator> Ac = Teuchos::null;
TopRAPFactory coarseRAPFactory(fineLevelManager, coarseLevelManager);
if (level.IsAvailable("A")) {
Ac = level.Get<RCP<Operator> >("A");
} else if (!isFinestLevel) {
// We only build here, the release is done later
coarseRAPFactory.Build(*level.GetPreviousLevel(), level);
}
if (level.IsAvailable("A"))
Ac = level.Get<RCP<Operator> >("A");
RCP<Matrix> Acm = rcp_dynamic_cast<Matrix>(Ac);
// Record the communicator on the level
if (!Ac.is_null())
level.SetComm(Ac->getDomainMap()->getComm());
// Test if we reach the end of the hierarchy
bool isOrigLastLevel = isLastLevel;
if (isLastLevel) {
// Last level as we have achieved the max limit
isLastLevel = true;
} else if (Ac.is_null()) {
// Last level for this processor, as it does not belong to the next
// subcommunicator. Other processors may continue working on the
// hierarchy
isLastLevel = true;
} else {
if (!Acm.is_null() && Acm->getGlobalNumRows() <= maxCoarseSize_) {
// Last level as the size of the coarse matrix became too small
GetOStream(Runtime0) << "Max coarse size (<= " << maxCoarseSize_ << ") achieved" << std::endl;
isLastLevel = true;
}
}
if (!Ac.is_null() && !isFinestLevel) {
RCP<Operator> A = Levels_[coarseLevelID-1]->template Get< RCP<Operator> >("A");
RCP<Matrix> Am = rcp_dynamic_cast<Matrix>(A);
const double maxCoarse2FineRatio = 0.8;
if (!Acm.is_null() && !Am.is_null() && Acm->getGlobalNumRows() > maxCoarse2FineRatio * Am->getGlobalNumRows()) {
// We could abort here, but for now we simply notify user.
// Couple of additional points:
// - if repartitioning is delayed until level K, but the aggregation
// procedure stagnates between levels K-1 and K. In this case,
// repartitioning could enable faster coarsening once again, but the
// hierarchy construction will abort due to the stagnation check.
// - if the matrix is small enough, we could move it to one processor.
GetOStream(Warnings0) << "Aggregation stagnated. Please check your matrix and/or adjust your configuration file."
<< "Possible fixes:\n"
<< " - reduce the maximum number of levels\n"
<< " - enable repartitioning\n"
<< " - increase the minimum coarse size." << std::endl;
}
}
if (isLastLevel) {
if (!isOrigLastLevel) {
// We did not expect to finish this early so we did request a smoother.
// We need a coarse solver instead. Do the magic.
level.Release(*smootherFact);
level.Request(*coarseFact);
}
// Do the actual build, if we have any data.
// NOTE: this is not a great check, we may want to call Build() regardless.
if (!Ac.is_null())
coarseFact->Build(level);
// Once the dirty deed is done, release stuff. The smoother has already
// been released.
level.Release(*coarseFact);
} else {
// isLastLevel = false => isOrigLastLevel = false, meaning that we have
// requested the smoother. Now we need to build it and to release it.
// We don't need to worry about the coarse solver, as we didn't request it.
if (!Ac.is_null())
smootherFact->Build(level);
level.Release(*smootherFact);
}
if (isLastLevel == true) {
if (isOrigLastLevel == false) {
// Earlier in the function, we constructed the next coarse level, and requested data for the that level,
// assuming that we are not at the coarsest level. Now, we changed our mind, so we have to release those.
Levels_[nextLevelID]->Release(TopRAPFactory(coarseLevelManager, nextLevelManager));
}
Levels_.resize(nextLevelID);
}
// I think this is the proper place for graph so that it shows every dependence
if (isDumpingEnabled_ && dumpLevel_ > 0 && coarseLevelID == dumpLevel_)
DumpCurrentGraph();
if (!isFinestLevel) {
// Release the hierarchy data
// We release so late to help blocked solvers, as the smoothers for them need A blocks
// which we construct in RAPFactory
level.Release(coarseRAPFactory);
}
if (oldRank != -1)
SetProcRankVerbose(oldRank);
return isLastLevel;
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::SetupRe() {
int numLevels = Levels_.size();
TEUCHOS_TEST_FOR_EXCEPTION(levelManagers_.size() != numLevels, Exceptions::RuntimeError,
"Hierarchy::SetupRe: " << Levels_.size() << " levels, but " << levelManagers_.size() << " level factory managers");
const int startLevel = 0;
Clear(startLevel);
#ifdef HAVE_MUELU_DEBUG
// Reset factories' data used for debugging
for (int i = 0; i < numLevels; i++)
levelManagers_[i]->ResetDebugData();
#endif
int levelID;
for (levelID = startLevel; levelID < numLevels;) {
bool r = Setup(levelID,
(levelID != 0 ? levelManagers_[levelID-1] : Teuchos::null),
levelManagers_[levelID],
(levelID+1 != numLevels ? levelManagers_[levelID+1] : Teuchos::null));
levelID++;
if (r) break;
}
// We may construct fewer levels for some reason, make sure we continue
// doing that in the future
Levels_ .resize(levelID);
levelManagers_.resize(levelID);
describe(GetOStream(Statistics0), GetVerbLevel());
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Setup(const FactoryManagerBase& manager, int startLevel, int numDesiredLevels) {
// Use MueLu::BaseClass::description() to avoid printing "{numLevels = 1}" (numLevels is increasing...)
PrintMonitor m0(*this, "Setup (" + this->MueLu::BaseClass::description() + ")", Runtime0);
Clear(startLevel);
// Check Levels_[startLevel] exists.
TEUCHOS_TEST_FOR_EXCEPTION(Levels_.size() <= startLevel, Exceptions::RuntimeError,
"MueLu::Hierarchy::Setup(): fine level (" << startLevel << ") does not exist");
TEUCHOS_TEST_FOR_EXCEPTION(numDesiredLevels <= 0, Exceptions::RuntimeError,
"Constructing non-positive (" << numDesiredLevels << ") number of levels does not make sense.");
// Check for fine level matrix A
TEUCHOS_TEST_FOR_EXCEPTION(!Levels_[startLevel]->IsAvailable("A"), Exceptions::RuntimeError,
"MueLu::Hierarchy::Setup(): fine level (" << startLevel << ") has no matrix A! "
"Set fine level matrix A using Level.Set()");
RCP<Operator> A = Levels_[startLevel]->template Get<RCP<Operator> >("A");
lib_ = A->getDomainMap()->lib();
RCP<const FactoryManagerBase> rcpmanager = rcpFromRef(manager);
const int lastLevel = startLevel + numDesiredLevels - 1;
GetOStream(Runtime0) << "Setup loop: startLevel = " << startLevel << ", lastLevel = " << lastLevel
<< " (stop if numLevels = " << numDesiredLevels << " or Ac.size() < " << maxCoarseSize_ << ")" << std::endl;
// Setup multigrid levels
int iLevel = 0;
if (numDesiredLevels == 1) {
iLevel = 0;
Setup(startLevel, Teuchos::null, rcpmanager, Teuchos::null); // setup finest==coarsest level (first and last managers are Teuchos::null)
} else {
bool bIsLastLevel = Setup(startLevel, Teuchos::null, rcpmanager, rcpmanager); // setup finest level (level 0) (first manager is Teuchos::null)
if (bIsLastLevel == false) {
for (iLevel = startLevel + 1; iLevel < lastLevel; iLevel++) {
bIsLastLevel = Setup(iLevel, rcpmanager, rcpmanager, rcpmanager); // setup intermediate levels
if (bIsLastLevel == true)
break;
}
if (bIsLastLevel == false)
Setup(lastLevel, rcpmanager, rcpmanager, Teuchos::null); // setup coarsest level (last manager is Teuchos::null)
}
}
// TODO: some check like this should be done at the beginning of the routine
TEUCHOS_TEST_FOR_EXCEPTION(iLevel != Levels_.size() - 1, Exceptions::RuntimeError,
"MueLu::Hierarchy::Setup(): number of level");
// TODO: this is not exception safe: manager will still hold default
// factories if you exit this function with an exception
manager.Clean();
describe(GetOStream(Statistics0), GetVerbLevel());
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Clear(int startLevel) {
if (startLevel < GetNumLevels())
GetOStream(Runtime0) << "Clearing old data (if any)" << std::endl;
for (int iLevel = startLevel; iLevel < GetNumLevels(); iLevel++)
Levels_[iLevel]->Clear();
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::ExpertClear() {
GetOStream(Runtime0) << "Clearing old data (expert)" << std::endl;
for (int iLevel = 0; iLevel < GetNumLevels(); iLevel++)
Levels_[iLevel]->ExpertClear();
}
#if defined(HAVE_MUELU_EXPERIMENTAL) && defined(HAVE_MUELU_ADDITIVE_VARIANT)
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
ReturnType Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Iterate(const MultiVector& B, MultiVector& X, ConvData conv,
bool InitialGuessIsZero, LO startLevel) {
LO nIts = conv.maxIts_;
MagnitudeType tol = conv.tol_;
std::string prefix = this->ShortClassName() + ": ";
std::string levelSuffix = " (level=" + toString(startLevel) + ")";
using namespace Teuchos;
RCP<Time> CompTime = Teuchos::TimeMonitor::getNewCounter(prefix + "Computational Time (total)");
RCP<Time> Concurrent = Teuchos::TimeMonitor::getNewCounter(prefix + "Concurrent portion");
RCP<Time> ApplyR = Teuchos::TimeMonitor::getNewCounter(prefix + "R: Computational Time");
RCP<Time> ApplyPbar = Teuchos::TimeMonitor::getNewCounter(prefix + "Pbar: Computational Time");
RCP<Time> CompFine = Teuchos::TimeMonitor::getNewCounter(prefix + "Fine: Computational Time");
RCP<Time> CompCoarse = Teuchos::TimeMonitor::getNewCounter(prefix + "Coarse: Computational Time");
RCP<Time> ApplySum = Teuchos::TimeMonitor::getNewCounter(prefix + "Sum: Computational Time");
RCP<Time> Synchronize_beginning = Teuchos::TimeMonitor::getNewCounter(prefix + "Synchronize_beginning");
RCP<Time> Synchronize_center = Teuchos::TimeMonitor::getNewCounter(prefix + "Synchronize_center");
RCP<Time> Synchronize_end = Teuchos::TimeMonitor::getNewCounter(prefix + "Synchronize_end");
RCP<Level> Fine = Levels_[0];
RCP<Level> Coarse;
RCP<Operator> A = Fine->Get< RCP<Operator> >("A");
Teuchos::RCP< const Teuchos::Comm< int > > communicator = A->getDomainMap()->getComm();
//Synchronize_beginning->start();
//communicator->barrier();
//Synchronize_beginning->stop();
CompTime->start();
SC one = STS::one(), zero = STS::zero();
bool zeroGuess = InitialGuessIsZero;
// ======= UPFRONT DEFINITION OF COARSE VARIABLES ===========
//RCP<const Map> origMap;
RCP< Operator > P;
RCP< Operator > Pbar;
RCP< Operator > R;
RCP< MultiVector > coarseRhs, coarseX;
RCP< Operator > Ac;
RCP<SmootherBase> preSmoo_coarse, postSmoo_coarse;
bool emptyCoarseSolve = true;
RCP<MultiVector> coarseX_prolonged = MultiVectorFactory::Build(X.getMap(), X.getNumVectors(), true);
RCP<const Import> importer;
if( Levels_.size()>1 )
{
Coarse = Levels_[1];
if (Coarse->IsAvailable("Importer"))
importer = Coarse->Get< RCP<const Import> >("Importer");
R = Coarse->Get< RCP<Operator> >("R");
P = Coarse->Get< RCP<Operator> >("P");
//if(Coarse->IsAvailable("Pbar"))
Pbar = Coarse->Get< RCP<Operator> >("Pbar");
coarseRhs = MultiVectorFactory::Build(R->getRangeMap(), B.getNumVectors(), true);
Ac = Coarse->Get< RCP< Operator > >("A");
ApplyR->start();
R->apply(B, *coarseRhs, Teuchos::NO_TRANS, one, zero);
//P->apply(B, *coarseRhs, Teuchos::TRANS, one, zero);
ApplyR->stop();
if (doPRrebalance_ || importer.is_null()) {
coarseX = MultiVectorFactory::Build(coarseRhs->getMap(), X.getNumVectors(), true);
} else {
RCP<TimeMonitor> ITime = rcp(new TimeMonitor(*this, prefix + "Solve : import (total)" , Timings0));
RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : import" + levelSuffix, Timings0));
// Import: range map of R --> domain map of rebalanced Ac (before subcomm replacement)
RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getTargetMap(), coarseRhs->getNumVectors());
coarseTmp->doImport(*coarseRhs, *importer, Xpetra::INSERT);
coarseRhs.swap(coarseTmp);
coarseX = MultiVectorFactory::Build(importer->getTargetMap(), X.getNumVectors(), true);
}
if (Coarse->IsAvailable("PreSmoother"))
preSmoo_coarse = Coarse->Get< RCP<SmootherBase> >("PreSmoother");
if (Coarse->IsAvailable("PostSmoother"))
postSmoo_coarse = Coarse->Get< RCP<SmootherBase> >("PostSmoother");
}
// ==========================================================
MagnitudeType prevNorm = STS::magnitude(STS::one()), curNorm = STS::magnitude(STS::one());
rate_ = 1.0;
for (LO i = 1; i <= nIts; i++) {
#ifdef HAVE_MUELU_DEBUG
if (A->getDomainMap()->isCompatible(*(X.getMap())) == false) {
std::ostringstream ss;
ss << "Level " << startLevel << ": level A's domain map is not compatible with X";
throw Exceptions::Incompatible(ss.str());
}
if (A->getRangeMap()->isCompatible(*(B.getMap())) == false) {
std::ostringstream ss;
ss << "Level " << startLevel << ": level A's range map is not compatible with B";
throw Exceptions::Incompatible(ss.str());
}
#endif
}
bool emptyFineSolve = true;
RCP< MultiVector > fineX;
fineX = MultiVectorFactory::Build(X.getMap(), X.getNumVectors(), true);
//Synchronize_center->start();
//communicator->barrier();
//Synchronize_center->stop();
Concurrent->start();
// NOTE: we need to check using IsAvailable before Get here to avoid building default smoother
if (Fine->IsAvailable("PreSmoother")) {
RCP<SmootherBase> preSmoo = Fine->Get< RCP<SmootherBase> >("PreSmoother");
CompFine->start();
preSmoo->Apply(*fineX, B, zeroGuess);
CompFine->stop();
emptyFineSolve = false;
}
if (Fine->IsAvailable("PostSmoother")) {
RCP<SmootherBase> postSmoo = Fine->Get< RCP<SmootherBase> >("PostSmoother");
CompFine->start();
postSmoo->Apply(*fineX, B, zeroGuess);
CompFine->stop();
emptyFineSolve = false;
}
if (emptyFineSolve == true) {
GetOStream(Warnings1) << "No fine grid smoother" << std::endl;
// Fine grid smoother is identity
fineX->update(one, B, zero);
}
if( Levels_.size()>1 )
{
// NOTE: we need to check using IsAvailable before Get here to avoid building default smoother
if (Coarse->IsAvailable("PreSmoother")) {
CompCoarse->start();
preSmoo_coarse->Apply(*coarseX, *coarseRhs, zeroGuess);
CompCoarse->stop();
emptyCoarseSolve = false;
}
if (Coarse->IsAvailable("PostSmoother")) {
CompCoarse->start();
postSmoo_coarse->Apply(*coarseX, *coarseRhs, zeroGuess);
CompCoarse->stop();
emptyCoarseSolve = false;
}
if (emptyCoarseSolve == true) {
GetOStream(Warnings1) << "No coarse grid solver" << std::endl;
// Coarse operator is identity
coarseX->update(one, *coarseRhs, zero);
}
Concurrent->stop();
//Synchronize_end->start();
//communicator->barrier();
//Synchronize_end->stop();
if (!doPRrebalance_ && !importer.is_null()) {
RCP<TimeMonitor> ITime = rcp(new TimeMonitor(*this, prefix + "Solve : export (total)" , Timings0));
RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : export" + levelSuffix, Timings0));
// Import: range map of rebalanced Ac (before subcomm replacement) --> domain map of P
RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getSourceMap(), coarseX->getNumVectors());
coarseTmp->doExport(*coarseX, *importer, Xpetra::INSERT);
coarseX.swap(coarseTmp);
}
ApplyPbar->start();
Pbar->apply(*coarseX, *coarseX_prolonged, Teuchos::NO_TRANS, one, zero);
ApplyPbar->stop();
}
ApplySum->start();
X.update(1.0, *fineX, 1.0, *coarseX_prolonged, 0.0);
ApplySum->stop();
CompTime->stop();
//communicator->barrier();
return (tol > 0 ? Unconverged : Undefined);
}
#else
// ---------------------------------------- Iterate -------------------------------------------------------
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
ReturnType Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Iterate(const MultiVector& B, MultiVector& X, ConvData conv,
bool InitialGuessIsZero, LO startLevel) {
LO nIts = conv.maxIts_;
MagnitudeType tol = conv.tol_;
// These timers work as follows. "iterateTime" records total time spent in
// iterate. "levelTime" records time on a per level basis. The label is
// crafted to mimic the per-level messages used in Monitors. Note that a
// given level is timed with a TimeMonitor instead of a Monitor or
// SubMonitor. This is mainly because I want to time each level
// separately, and Monitors/SubMonitors print "(total) xx yy zz" ,
// "(sub,total) xx yy zz", respectively, which is subject to
// misinterpretation. The per-level TimeMonitors are stopped/started
// manually before/after a recursive call to Iterate. A side artifact to
// this approach is that the counts for intermediate level timers are twice
// the counts for the finest and coarsest levels.
std::string prefix = this->ShortClassName() + ": ";
std::string levelSuffix = " (level=" + toString(startLevel) + ")";
RCP<Monitor> iterateTime;
RCP<TimeMonitor> iterateTime1;
if (startLevel == 0)
iterateTime = rcp(new Monitor(*this, "Solve", (nIts == 1) ? None : Runtime0, Timings0));
else
iterateTime1 = rcp(new TimeMonitor(*this, prefix + "Solve (total, level=" + toString(startLevel) + ")", Timings0));
std::string iterateLevelTimeLabel = prefix + "Solve" + levelSuffix;
RCP<TimeMonitor> iterateLevelTime = rcp(new TimeMonitor(*this, iterateLevelTimeLabel, Timings0));
bool zeroGuess = InitialGuessIsZero;
RCP<Level> Fine = Levels_[startLevel];
RCP<Operator> A = Fine->Get< RCP<Operator> >("A");
using namespace Teuchos;
RCP<Time> CompCoarse = Teuchos::TimeMonitor::getNewCounter(prefix + "Coarse: Computational Time");
if (A.is_null()) {
// This processor does not have any data for this process on coarser
// levels. This can only happen when there are multiple processors and
// we use repartitioning.
return Undefined;
}
// Print residual information before iterating
MagnitudeType prevNorm = STS::magnitude(STS::one()), curNorm = STS::magnitude(STS::one());
rate_ = 1.0;
if (startLevel == 0 && !isPreconditioner_ &&
(IsPrint(Statistics1) || tol > 0)) {
// We calculate the residual only if we want to print it out, or if we
// want to stop once we achive the tolerance
Teuchos::Array<MagnitudeType> rn;
rn = Utilities::ResidualNorm(*A, X, B);
if (tol > 0) {
bool passed = true;
for (LO k = 0; k < rn.size(); k++)
if (rn[k] >= tol)
passed = false;
if (passed)
return Converged;
}
if (IsPrint(Statistics1))
GetOStream(Statistics1) << "iter: "
<< std::setiosflags(std::ios::left)
<< std::setprecision(3) << 0 // iter 0
<< " residual = "
<< std::setprecision(10) << rn
<< std::endl;
}
SC one = STS::one(), zero = STS::zero();
for (LO i = 1; i <= nIts; i++) {
#ifdef HAVE_MUELU_DEBUG
if (A->getDomainMap()->isCompatible(*(X.getMap())) == false) {
std::ostringstream ss;
ss << "Level " << startLevel << ": level A's domain map is not compatible with X";
throw Exceptions::Incompatible(ss.str());
}
if (A->getRangeMap()->isCompatible(*(B.getMap())) == false) {
std::ostringstream ss;
ss << "Level " << startLevel << ": level A's range map is not compatible with B";
throw Exceptions::Incompatible(ss.str());
}
#endif
if (startLevel == as<LO>(Levels_.size())-1) {
// On the coarsest level, we do either smoothing (if defined) or a direct solve.
RCP<TimeMonitor> CLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : coarse" + levelSuffix, Timings0));
bool emptySolve = true;
// NOTE: we need to check using IsAvailable before Get here to avoid building default smoother
if (Fine->IsAvailable("PreSmoother")) {
RCP<SmootherBase> preSmoo = Fine->Get< RCP<SmootherBase> >("PreSmoother");
CompCoarse->start();
preSmoo->Apply(X, B, zeroGuess);
CompCoarse->stop();
zeroGuess = false;
emptySolve = false;
}
if (Fine->IsAvailable("PostSmoother")) {
RCP<SmootherBase> postSmoo = Fine->Get< RCP<SmootherBase> >("PostSmoother");
CompCoarse->start();
postSmoo->Apply(X, B, zeroGuess);
CompCoarse->stop();
emptySolve = false;
}
if (emptySolve == true) {
GetOStream(Warnings1) << "No coarse grid solver" << std::endl;
// Coarse operator is identity
X.update(one, B, zero);
}
} else {
// On intermediate levels, we do cycles
RCP<Level> Coarse = Levels_[startLevel+1];
{
// ============== PRESMOOTHING ==============
RCP<TimeMonitor> STime = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing (total)" , Timings0));
RCP<TimeMonitor> SLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing" + levelSuffix, Timings0));
if (Fine->IsAvailable("PreSmoother")) {
RCP<SmootherBase> preSmoo = Fine->Get< RCP<SmootherBase> >("PreSmoother");
preSmoo->Apply(X, B, zeroGuess);
} else {
GetOStream(Warnings1) << "Level " << startLevel << ": No PreSmoother!" << std::endl;
}
}
RCP<MultiVector> residual;
{
RCP<TimeMonitor> ATime = rcp(new TimeMonitor(*this, prefix + "Solve : residual calculation (total)" , Timings0));
RCP<TimeMonitor> ALevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : residual calculation" + levelSuffix, Timings0));
residual = Utilities::Residual(*A, X, B);
}
RCP<Operator> P = Coarse->Get< RCP<Operator> >("P");
if (Coarse->IsAvailable("Pbar"))
P = Coarse->Get< RCP<Operator> >("Pbar");
RCP<MultiVector> coarseRhs, coarseX;
const bool initializeWithZeros = true;
{
// ============== RESTRICTION ==============
RCP<TimeMonitor> RTime = rcp(new TimeMonitor(*this, prefix + "Solve : restriction (total)" , Timings0));
RCP<TimeMonitor> RLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : restriction" + levelSuffix, Timings0));
if (implicitTranspose_) {
coarseRhs = MultiVectorFactory::Build(P->getDomainMap(), X.getNumVectors(), !initializeWithZeros);
P->apply(*residual, *coarseRhs, Teuchos::TRANS, one, zero);
} else {
RCP<Operator> R = Coarse->Get< RCP<Operator> >("R");
coarseRhs = MultiVectorFactory::Build(R->getRangeMap(), X.getNumVectors(), !initializeWithZeros);
R->apply(*residual, *coarseRhs, Teuchos::NO_TRANS, one, zero);
}
}
RCP<const Import> importer;
if (Coarse->IsAvailable("Importer"))
importer = Coarse->Get< RCP<const Import> >("Importer");
if (doPRrebalance_ || importer.is_null()) {
//std::cout<<"Rebalance skips import-export"<<std::endl;
coarseX = MultiVectorFactory::Build(coarseRhs->getMap(), X.getNumVectors(), initializeWithZeros);
} else {
//std::cout<<"Rebalance does NOT skip import-export"<<std::endl;
RCP<TimeMonitor> ITime = rcp(new TimeMonitor(*this, prefix + "Solve : import (total)" , Timings0));
RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : import" + levelSuffix, Timings0));
// Import: range map of R --> domain map of rebalanced Ac (before subcomm replacement)
RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getTargetMap(), coarseRhs->getNumVectors());
coarseTmp->doImport(*coarseRhs, *importer, Xpetra::INSERT);
coarseRhs.swap(coarseTmp);
coarseX = MultiVectorFactory::Build(importer->getTargetMap(), X.getNumVectors(), initializeWithZeros);
}
RCP<Operator> Ac = Coarse->Get< RCP<Operator> >("A");
if (!Ac.is_null()) {
RCP<const Map> origXMap = coarseX->getMap();
// Replace maps with maps with a subcommunicator
coarseRhs->replaceMap(Ac->getRangeMap());
coarseX ->replaceMap(Ac->getDomainMap());
{
iterateLevelTime = Teuchos::null; // stop timing this level
Iterate(*coarseRhs, *coarseX, 1, true, startLevel+1);
// ^^ zero initial guess
if (Cycle_ == WCYCLE)
Iterate(*coarseRhs, *coarseX, 1, false, startLevel+1);
// ^^ nonzero initial guess
iterateLevelTime = rcp(new TimeMonitor(*this, iterateLevelTimeLabel)); // restart timing this level
}
coarseX->replaceMap(origXMap);
}
if (!doPRrebalance_ && !importer.is_null()) {
RCP<TimeMonitor> ITime = rcp(new TimeMonitor(*this, prefix + "Solve : export (total)" , Timings0));
RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : export" + levelSuffix, Timings0));
// Import: range map of rebalanced Ac (before subcomm replacement) --> domain map of P
RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getSourceMap(), coarseX->getNumVectors());
coarseTmp->doExport(*coarseX, *importer, Xpetra::INSERT);
coarseX.swap(coarseTmp);
}
// Update X += P * coarseX
// Note that due to what may be round-off error accumulation, use of the fused kernel
// P->apply(*coarseX, X, Teuchos::NO_TRANS, one, one);
// can in some cases result in slightly higher iteration counts.
RCP<MultiVector> correction = MultiVectorFactory::Build(P->getRangeMap(), X.getNumVectors(),false);
{
// ============== PROLONGATION ==============
RCP<TimeMonitor> PTime = rcp(new TimeMonitor(*this, prefix + "Solve : prolongation (total)" , Timings0));
RCP<TimeMonitor> PLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : prolongation" + levelSuffix, Timings0));
P->apply(*coarseX, *correction, Teuchos::NO_TRANS, one, zero);
}
X.update(one, *correction, one);
{
// ============== POSTSMOOTHING ==============
RCP<TimeMonitor> STime = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing (total)" , Timings0));
RCP<TimeMonitor> SLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing" + levelSuffix, Timings0));
if (Fine->IsAvailable("PostSmoother")) {
RCP<SmootherBase> postSmoo = Fine->Get< RCP<SmootherBase> >("PostSmoother");
postSmoo->Apply(X, B, false);
} else {
GetOStream(Warnings1) << "Level " << startLevel << ": No PostSmoother!" << std::endl;
}
}
}
zeroGuess = false;
if (startLevel == 0 && !isPreconditioner_ &&
(IsPrint(Statistics1) || tol > 0)) {
// We calculate the residual only if we want to print it out, or if we
// want to stop once we achive the tolerance
Teuchos::Array<MagnitudeType> rn;
rn = Utilities::ResidualNorm(*A, X, B);
prevNorm = curNorm;
curNorm = rn[0];
rate_ = as<MagnitudeType>(curNorm / prevNorm);
if (tol > 0) {
bool passed = true;
for (LO k = 0; k < rn.size(); k++)
if (rn[k] >= tol)
passed = false;
if (passed)
return Converged;
}
if (IsPrint(Statistics1))
GetOStream(Statistics1) << "iter: "
<< std::setiosflags(std::ios::left)
<< std::setprecision(3) << i
<< " residual = "
<< std::setprecision(10) << rn
<< std::endl;
}
}
return (tol > 0 ? Unconverged : Undefined);
}
#endif
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write(const LO& start, const LO& end, const std::string &suffix) {
LO startLevel = (start != -1 ? start : 0);
LO endLevel = (end != -1 ? end : Levels_.size()-1);
TEUCHOS_TEST_FOR_EXCEPTION(startLevel > endLevel, Exceptions::RuntimeError,
"MueLu::Hierarchy::Write : startLevel must be <= endLevel");
TEUCHOS_TEST_FOR_EXCEPTION(startLevel < 0 || endLevel >= Levels_.size(), Exceptions::RuntimeError,
"MueLu::Hierarchy::Write bad start or end level");
for (LO i = startLevel; i < endLevel + 1; i++) {
RCP<Matrix> A = rcp_dynamic_cast<Matrix>(Levels_[i]-> template Get< RCP< Operator> >("A")), P, R;
if (i > 0) {
P = rcp_dynamic_cast<Matrix>(Levels_[i]-> template Get< RCP< Operator> >("P"));
if (!implicitTranspose_)
R = rcp_dynamic_cast<Matrix>(Levels_[i]-> template Get< RCP< Operator> >("R"));
}
if (!A.is_null()) Xpetra::IO<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write("A_" + toString(i) + suffix + ".m", *A);
if (!P.is_null()) Xpetra::IO<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write("P_" + toString(i) + suffix + ".m", *P);
if (!R.is_null()) Xpetra::IO<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write("R_" + toString(i) + suffix + ".m", *R);
}
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Keep(const std::string & ename, const FactoryBase* factory) {
for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
(*it)->Keep(ename, factory);
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Delete(const std::string& ename, const FactoryBase* factory) {
for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
(*it)->Delete(ename, factory);
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::AddKeepFlag(const std::string & ename, const FactoryBase* factory, KeepType keep) {
for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
(*it)->AddKeepFlag(ename, factory, keep);
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::RemoveKeepFlag(const std::string & ename, const FactoryBase* factory, KeepType keep) {
for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
(*it)->RemoveKeepFlag(ename, factory, keep);
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
std::string Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::description() const {
std::ostringstream out;
out << BaseClass::description();
out << "{#levels = " << GetGlobalNumLevels() << ", complexity = " << GetOperatorComplexity() << "}";
return out.str();
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::describe(Teuchos::FancyOStream& out, const Teuchos::EVerbosityLevel tVerbLevel) const {
describe(out, toMueLuVerbLevel(tVerbLevel));
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::describe(Teuchos::FancyOStream& out, const VerbLevel verbLevel) const {
RCP<Operator> A0 = Levels_[0]->template Get<RCP<Operator> >("A");
RCP<const Teuchos::Comm<int> > comm = A0->getDomainMap()->getComm();
int numLevels = GetNumLevels();
RCP<Operator> Ac = Levels_[numLevels-1]->template Get<RCP<Operator> >("A");
if (Ac.is_null()) {
// It may happen that we do repartition on the last level, but the matrix
// is small enough to satisfy "max coarse size" requirement. Then, even
// though we have the level, the matrix would be null on all but one processors
numLevels--;
}
int root = comm->getRank();
#ifdef HAVE_MPI
int smartData = numLevels*comm->getSize() + comm->getRank(), maxSmartData;
reduceAll(*comm, Teuchos::REDUCE_MAX, smartData, Teuchos::ptr(&maxSmartData));
root = maxSmartData % comm->getSize();
#endif
std::string outstr;
if (comm->getRank() == root && verbLevel & (Statistics0 | Test)) {
std::vector<Xpetra::global_size_t> nnzPerLevel;
std::vector<Xpetra::global_size_t> rowsPerLevel;
std::vector<int> numProcsPerLevel;
bool aborted = false;
for (int i = 0; i < numLevels; i++) {
TEUCHOS_TEST_FOR_EXCEPTION(!(Levels_[i]->IsAvailable("A")) , Exceptions::RuntimeError,
"Operator A is not available on level " << i);
RCP<Operator> A = Levels_[i]->template Get<RCP<Operator> >("A");
TEUCHOS_TEST_FOR_EXCEPTION(A.is_null(), Exceptions::RuntimeError,
"Operator A on level " << i << " is null.");
RCP<Matrix> Am = rcp_dynamic_cast<Matrix>(A);
if (Am.is_null()) {
GetOStream(Warnings0) << "Some level operators are not matrices, statistics calculation aborted" << std::endl;
aborted = true;
break;
}
Xpetra::global_size_t nnz = Am->getGlobalNumEntries();
nnzPerLevel .push_back(nnz);
rowsPerLevel .push_back(Am->getGlobalNumRows());
numProcsPerLevel.push_back(Am->getRowMap()->getComm()->getSize());
}
if (!aborted) {
std::ostringstream oss;
oss << "\n--------------------------------------------------------------------------------\n" <<
"--- Multigrid Summary ---\n"
"--------------------------------------------------------------------------------" << std::endl;
oss << "Number of levels = " << numLevels << std::endl;
oss << "Operator complexity = " << std::setprecision(2) << std::setiosflags(std::ios::fixed)
<< GetOperatorComplexity() << std::endl;
switch (Cycle_) {
case VCYCLE:
oss << "Cycle type = V" << std::endl;
break;
case WCYCLE:
oss << "Cycle type = W" << std::endl;
break;
default:
break;
};
oss << std::endl;
Xpetra::global_size_t tt = rowsPerLevel[0];
int rowspacer = 2; while (tt != 0) { tt /= 10; rowspacer++; }
tt = nnzPerLevel[0];
int nnzspacer = 2; while (tt != 0) { tt /= 10; nnzspacer++; }
tt = numProcsPerLevel[0];
int npspacer = 2; while (tt != 0) { tt /= 10; npspacer++; }
oss << "level " << std::setw(rowspacer) << " rows " << std::setw(nnzspacer) << " nnz " << " nnz/row" << std::setw(npspacer) << " c ratio" << " procs" << std::endl;
for (size_t i = 0; i < nnzPerLevel.size(); ++i) {
oss << " " << i << " ";
oss << std::setw(rowspacer) << rowsPerLevel[i];
oss << std::setw(nnzspacer) << nnzPerLevel[i];
oss << std::setprecision(2) << std::setiosflags(std::ios::fixed);
oss << std::setw(9) << as<double>(nnzPerLevel[i]) / rowsPerLevel[i];
if (i) oss << std::setw(9) << as<double>(rowsPerLevel[i-1])/rowsPerLevel[i];
else oss << std::setw(9) << " ";
oss << " " << std::setw(npspacer) << numProcsPerLevel[i] << std::endl;
}
oss << std::endl;
for (int i = 0; i < GetNumLevels(); ++i) {
RCP<SmootherBase> preSmoo, postSmoo;
if (Levels_[i]->IsAvailable("PreSmoother"))
preSmoo = Levels_[i]->template Get< RCP<SmootherBase> >("PreSmoother");
if (Levels_[i]->IsAvailable("PostSmoother"))
postSmoo = Levels_[i]->template Get< RCP<SmootherBase> >("PostSmoother");
if (preSmoo != null && preSmoo == postSmoo)
oss << "Smoother (level " << i << ") both : " << preSmoo->description() << std::endl;
else {
oss << "Smoother (level " << i << ") pre : "
<< (preSmoo != null ? preSmoo->description() : "no smoother") << std::endl;
oss << "Smoother (level " << i << ") post : "
<< (postSmoo != null ? postSmoo->description() : "no smoother") << std::endl;
}
oss << std::endl;
}
outstr = oss.str();
}
}
#ifdef HAVE_MPI
RCP<const Teuchos::MpiComm<int> > mpiComm = rcp_dynamic_cast<const Teuchos::MpiComm<int> >(comm);
MPI_Comm rawComm = (*mpiComm->getRawMpiComm())();
int strLength = outstr.size();
MPI_Bcast(&strLength, 1, MPI_INT, root, rawComm);
if (comm->getRank() != root)
outstr.resize(strLength);
MPI_Bcast(&outstr[0], strLength, MPI_CHAR, root, rawComm);
#endif
out << outstr;
}
// NOTE: at some point this should be replaced by a friend operator <<
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::print(std::ostream& out, const VerbLevel verbLevel) const {
Teuchos::OSTab tab2(out);
for (int i = 0; i < GetNumLevels(); ++i)
Levels_[i]->print(out, verbLevel);
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::IsPreconditioner(const bool flag) {
isPreconditioner_ = flag;
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::DumpCurrentGraph() const {
if (GetProcRankVerbose() != 0)
return;
#if defined(HAVE_MUELU_BOOST) && defined(HAVE_MUELU_BOOST_FOR_REAL) && defined(BOOST_VERSION) && (BOOST_VERSION >= 104400)
BoostGraph graph;
BoostProperties dp;
dp.property("label", boost::get(boost::vertex_name, graph));
dp.property("id", boost::get(boost::vertex_index, graph));
dp.property("label", boost::get(boost::edge_name, graph));
dp.property("color", boost::get(boost::edge_color, graph));
// create local maps
std::map<const FactoryBase*, BoostVertex> vindices;
typedef std::map<std::pair<BoostVertex,BoostVertex>, std::string> emap; emap edges;
for (int i = dumpLevel_; i <= dumpLevel_+1 && i < GetNumLevels(); i++) {
edges.clear();
Levels_[i]->UpdateGraph(vindices, edges, dp, graph);
for (emap::const_iterator eit = edges.begin(); eit != edges.end(); eit++) {
std::pair<BoostEdge, bool> boost_edge = boost::add_edge(eit->first.first, eit->first.second, graph);
boost::put("label", dp, boost_edge.first, eit->second);
if (i == dumpLevel_)
boost::put("color", dp, boost_edge.first, std::string("red"));
else
boost::put("color", dp, boost_edge.first, std::string("blue"));
}
}
// add legend
std::ostringstream legend;
legend << "< <TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\" CELLPADDING=\"4\"> \
<TR><TD COLSPAN=\"2\">Legend</TD></TR> \
<TR><TD><FONT color=\"red\">Level " << dumpLevel_ << "</FONT></TD><TD><FONT color=\"blue\">Level " << dumpLevel_+1 << "</FONT></TD></TR> \
</TABLE> >";
BoostVertex boost_vertex = boost::add_vertex(graph);
boost::put("label", dp, boost_vertex, legend.str());
std::ofstream out(dumpFile_.c_str());
boost::write_graphviz_dp(out, graph, dp, std::string("id"));
#else
GetOStream(Errors) << "Dependency graph output requires boost and MueLu_ENABLE_Boost_for_real" << std::endl;
#endif
}
// Enforce that coordinate vector's map is consistent with that of A
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::ReplaceCoordinateMap(Level& level) {
RCP<Operator> Ao = level.Get<RCP<Operator> >("A");
RCP<Matrix> A = rcp_dynamic_cast<Matrix>(Ao);
if (A.is_null()) {
GetOStream(Warnings1) << "Hierarchy::ReplaceCoordinateMap: operator is not a matrix, skipping..." << std::endl;
return;
}
typedef Xpetra::MultiVector<double,LO,GO,NO> xdMV;
RCP<xdMV> coords = level.Get<RCP<xdMV> >("Coordinates");
if (A->getRowMap()->isSameAs(*(coords->getMap()))) {
GetOStream(Warnings1) << "Hierarchy::ReplaceCoordinateMap: matrix and coordinates maps are same, skipping..." << std::endl;
return;
}
if (A->IsView("stridedMaps") && rcp_dynamic_cast<const StridedMap>(A->getRowMap("stridedMaps")) != Teuchos::null) {
RCP<const StridedMap> stridedRowMap = rcp_dynamic_cast<const StridedMap>(A->getRowMap("stridedMaps"));
// It is better to through an exceptions if maps may be inconsistent, than to ignore it and experience unfathomable breakdowns
TEUCHOS_TEST_FOR_EXCEPTION(stridedRowMap->getStridedBlockId() != -1 || stridedRowMap->getOffset() != 0,
Exceptions::RuntimeError, "Hierarchy::ReplaceCoordinateMap: nontrivial maps (block id = " << stridedRowMap->getStridedBlockId()
<< ", offset = " << stridedRowMap->getOffset() << ")");
}
GetOStream(Runtime1) << "Replacing coordinate map" << std::endl;
size_t blkSize = A->GetFixedBlockSize();
RCP<const Map> nodeMap = A->getRowMap();
if (blkSize > 1) {
// Create a nodal map, as coordinates have not been expanded to a DOF map yet.
RCP<const Map> dofMap = A->getRowMap();
GO indexBase = dofMap->getIndexBase();
size_t numLocalDOFs = dofMap->getNodeNumElements();
TEUCHOS_TEST_FOR_EXCEPTION(numLocalDOFs % blkSize, Exceptions::RuntimeError,
"Hierarchy::ReplaceCoordinateMap: block size (" << blkSize << ") is incompatible with the number of local dofs in a row map (" << numLocalDOFs);
ArrayView<const GO> GIDs = dofMap->getNodeElementList();
Array<GO> nodeGIDs(numLocalDOFs/blkSize);
for (size_t i = 0; i < numLocalDOFs; i += blkSize)
nodeGIDs[i/blkSize] = (GIDs[i] - indexBase)/blkSize + indexBase;
Xpetra::global_size_t INVALID = Teuchos::OrdinalTraits<Xpetra::global_size_t>::invalid();
nodeMap = MapFactory::Build(dofMap->lib(), INVALID, nodeGIDs(), indexBase, dofMap->getComm());
}
Array<ArrayView<const double> > coordDataView;
std::vector<ArrayRCP<const double> > coordData;
for (size_t i = 0; i < coords->getNumVectors(); i++) {
coordData.push_back(coords->getData(i));
coordDataView.push_back(coordData[i]());
}
RCP<xdMV> newCoords = Xpetra::MultiVectorFactory<double,LO,GO,NO>::Build(nodeMap, coordDataView(), coords->getNumVectors());
level.Set("Coordinates", newCoords);
}
} //namespace MueLu
#endif // MUELU_HIERARCHY_DEF_HPP
|