/usr/include/trilinos/MueLu_CGSolver_def.hpp is in libtrilinos-muelu-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | // @HEADER
//
// ***********************************************************************
//
// MueLu: A package for multigrid based preconditioning
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jonathan Hu (jhu@sandia.gov)
// Andrey Prokopenko (aprokop@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef MUELU_CGSOLVER_DEF_HPP
#define MUELU_CGSOLVER_DEF_HPP
#include <Xpetra_MatrixFactory.hpp>
#include <Xpetra_MatrixMatrix.hpp>
#include "MueLu_Utilities.hpp"
#include "MueLu_Constraint.hpp"
#include "MueLu_Monitor.hpp"
#include "MueLu_CGSolver.hpp"
namespace MueLu {
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
CGSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::CGSolver(size_t Its)
: nIts_(Its)
{ }
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void CGSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Iterate(const Matrix& Aref, const Constraint& C, const Matrix& P0, RCP<Matrix>& finalP) const {
// Note: this function matrix notations follow Saad's "Iterative methods", ed. 2, pg. 246
// So, X is the unknown prolongator, P's are conjugate directions, Z's are preconditioned P's
PrintMonitor m(*this, "CG iterations");
if (nIts_ == 0) {
finalP = MatrixFactory2::BuildCopy(rcpFromRef(P0));
return;
}
RCP<const Matrix> A = rcpFromRef(Aref);
ArrayRCP<const SC> D = Utilities::GetMatrixDiagonal(*A);
bool useTpetra = (A->getRowMap()->lib() == Xpetra::UseTpetra);
Teuchos::FancyOStream& mmfancy = this->GetOStream(Statistics2);
SC one = Teuchos::ScalarTraits<SC>::one();
RCP<Matrix> X, P, R, Z, AP;
RCP<Matrix> newX, tmpAP;
#ifndef TWO_ARG_MATRIX_ADD
RCP<Matrix> newR, newP;
#endif
SC oldRZ, newRZ, alpha, beta, app;
// T is used only for projecting onto
RCP<CrsMatrix> T_ = CrsMatrixFactory::Build(C.GetPattern());
T_->fillComplete(P0.getDomainMap(), P0.getRangeMap());
RCP<Matrix> T = rcp(new CrsMatrixWrap(T_));
// Initial P0 would only be used for multiplication
X = rcp_const_cast<Matrix>(rcpFromRef(P0));
tmpAP = MatrixMatrix::Multiply(*A, false, *X, false, mmfancy, true/*doFillComplete*/, true/*optimizeStorage*/);
C.Apply(*tmpAP, *T);
// R_0 = -A*X_0
R = Xpetra::MatrixFactory2<Scalar, LocalOrdinal, GlobalOrdinal, Node>::BuildCopy(T);
R->resumeFill();
R->scale(-one);
R->fillComplete(R->getDomainMap(), R->getRangeMap());
// Z_0 = M^{-1}R_0
Z = Xpetra::MatrixFactory2<Scalar, LocalOrdinal, GlobalOrdinal, Node>::BuildCopy(R);
Utilities::MyOldScaleMatrix(*Z, D, true, true, false);
// P_0 = Z_0
P = Xpetra::MatrixFactory2<Scalar, LocalOrdinal, GlobalOrdinal, Node>::BuildCopy(Z);
oldRZ = Utilities::Frobenius(*R, *Z);
for (size_t i = 0; i < nIts_; i++) {
// AP = constrain(A*P)
if (i == 0 || useTpetra) {
// Construct the MxM pattern from scratch
// This is done by default for Tpetra as the three argument version requires tmpAP
// to *not* be locally indexed which defeats the purpose
// TODO: need a three argument Tpetra version which allows reuse of already fill-completed matrix
tmpAP = MatrixMatrix::Multiply(*A, false, *P, false, mmfancy, true/*doFillComplete*/, true/*optimizeStorage*/);
} else {
// Reuse the MxM pattern
tmpAP = MatrixMatrix::Multiply(*A, false, *P, false, tmpAP, mmfancy, true/*doFillComplete*/, true/*optimizeStorage*/);
}
C.Apply(*tmpAP, *T);
AP = T;
app = Utilities::Frobenius(*AP, *P);
if (Teuchos::ScalarTraits<SC>::magnitude(app) < Teuchos::ScalarTraits<SC>::sfmin()) {
// It happens, for instance, if P = 0
// For example, if we use TentativePFactory for both nonzero pattern and initial guess
// I think it might also happen because of numerical breakdown, but we don't test for that yet
if (i == 0)
X = MatrixFactory2::BuildCopy(rcpFromRef(P0));
break;
}
// alpha = (R_i, Z_i)/(A*P_i, P_i)
alpha = oldRZ / app;
this->GetOStream(Runtime1,1) << "alpha = " << alpha << std::endl;
// X_{i+1} = X_i + alpha*P_i
#ifndef TWO_ARG_MATRIX_ADD
newX = Teuchos::null;
MatrixMatrix::TwoMatrixAdd(*P, false, alpha, *X, false, one, newX, mmfancy);
newX->fillComplete(P0.getDomainMap(), P0.getRangeMap());
X.swap(newX);
#else
MatrixMatrix::TwoMatrixAdd(*P, false, alpha, *X, one);
#endif
if (i == nIts_ - 1)
break;
// R_{i+1} = R_i - alpha*A*P_i
#ifndef TWO_ARG_MATRIX_ADD
newR = Teuchos::null;
MatrixMatrix::TwoMatrixAdd(*AP, false, -alpha, *R, false, one, newR, mmfancy);
newR->fillComplete(P0.getDomainMap(), P0.getRangeMap());
R.swap(newR);
#else
MatrixMatrix::TwoMatrixAdd(*AP, false, -alpha, *R, one);
#endif
// Z_{i+1} = M^{-1} R_{i+1}
Z = MatrixFactory2::BuildCopy(R);
Utilities::MyOldScaleMatrix(*Z, D, true, true, false);
// beta = (R_{i+1}, Z_{i+1})/(R_i, Z_i)
newRZ = Utilities::Frobenius(*R, *Z);
beta = newRZ / oldRZ;
// P_{i+1} = Z_{i+1} + beta*P_i
#ifndef TWO_ARG_MATRIX_ADD
newP = Teuchos::null;
MatrixMatrix::TwoMatrixAdd(*P, false, beta, *Z, false, one, newP, mmfancy);
newP->fillComplete(P0.getDomainMap(), P0.getRangeMap());
P.swap(newP);
#else
MatrixMatrix::TwoMatrixAdd(*Z, false, one, *P, beta);
#endif
oldRZ = newRZ;
}
finalP = X;
}
} // namespace MueLu
#endif //ifndef MUELU_CGSOLVER_DECL_HPP
|