/usr/include/trilinos/ml_MultiLevelPreconditioner.h is in libtrilinos-ml-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 | /*!
* \file ml_MultiLevelPreconditioner.h
*
* \class MultiLevelPreconditioner
*
* \brief ML black-box preconditioner for Epetra_RowMatrix derived classes.
*
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
/*#############################################################################
# CVS File Information
# Current revision: $Revision$
# Branch: $Branch$
# Last modified: $Date$
# Modified by: $Author$
#############################################################################*/
#ifndef ML_MULTILEVELPRECONDITIONER_H
#define ML_MULTILEVELPRECONDITIONER_H
#include "ml_include.h"
#if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_TEUCHOS)
// define the following to allow compilation without AztecOO
#ifndef HAVE_ML_AZTECOO
#ifndef AZ_PROC_SIZE
#define AZ_PROC_SIZE 1
#endif
#ifndef AZ_OPTIONS_SIZE
#define AZ_OPTIONS_SIZE 1
#endif
#ifndef AZ_PARAMS_SIZE
#define AZ_PARAMS_SIZE 1
#endif
#ifndef AZ_STATUS_SIZE
#define AZ_STATUS_SIZE 1
#endif
#endif
class Epetra_Map;
class Epetra_BlockMap;
class Epetra_MultiVector;
class Epetra_Comm;
class Epetra_CrsMatrix;
class Epetra_FECrsMatrix;
class Epetra_VbrMatrix;
#include "Epetra_SerialDenseMatrix.h"
#include "Epetra_SerialDenseVector.h"
#include "Epetra_SerialDenseSolver.h"
#define ML_MEM_SIZE 20
#define ML_MEM_INITIAL 0
#define ML_MEM_FINAL 1
#define ML_MEM_SMOOTHER 2
#define ML_MEM_COARSE 3
#define ML_MEM_HIERARCHY 4
#define ML_MEM_PREC_FIRST 5
#define ML_MEM_PREC_OTHER 6
#define ML_MEM_TOT1 7
#define ML_MEM_TOT2 8
#define ML_MEM_INITIAL_MALLOC 10
#define ML_MEM_FINAL_MALLOC 11
#define ML_MEM_SMOOTHER_MALLOC 12
#define ML_MEM_COARSE_MALLOC 13
#define ML_MEM_HIERARCHY_MALLOC 14
#define ML_MEM_PREC_FIRST_MALLOC 15
#define ML_MEM_PREC_OTHER_MALLOC 16
#define ML_MEM_TOT1_MALLOC 17
#define ML_MEM_TOT2_MALLOC 18
#include "Epetra_Operator.h"
#include "Epetra_RowMatrix.h"
#ifdef HAVE_ML_AZTECOO
#include "Epetra_MultiVector.h"
#include "Epetra_MsrMatrix.h"
#endif
#include "Teuchos_ParameterList.hpp"
#ifdef HAVE_ML_EPETRAEXT
#include "EpetraExt_SolverMap_CrsMatrix.h"
#endif
#include "ml_epetra_utils.h"
namespace ML_Epetra
{
//! Sets default parameters for aggregation-based preconditioners.
/*! This function, defined in the namespace ML_Epetra, can be used to set
default values in a user's defined Teuchos::ParameterList.
\param ProblemType (In) : a std::string, whose possible values are:
- "SA" : classical smoothed aggregation preconditioners;
- "NSSA" : default values for Petrov-Galerkin preconditioner for nonsymmetric systems
- "maxwell" : default values for aggregation preconditioner for eddy current systems
- "DD" : defaults for 2-level domain decomposition preconditioners based
on aggregation;
- "DD-LU" : Like "DD", but use exact LU decompositions on each subdomain;
- "DD-ML" : 3-level domain decomposition preconditioners, with coarser
spaces defined by aggregation;
- "DD-ML-LU" : Like "DD-ML", but with LU decompositions on each subdomain.
\param List (Out) : list which will populated by the default parameters
\param options (In/Out) : integer array, of size \c AZ_OPTIONS_SIZE, that will be
populated with suitable values. A pointer to \c options will be stick into
the parameters list. Note that this array is still required to apply the
preconditioner! Do not delete options, nor let it go out of scope. The default value is
0, meaning that \c SetDefaults() will allocate the array.
\param params (In/Out) : double array, of size \c AZ_PARAMS_SIZE. See comments
for \c options.
\param OverWrite (In) : boolean. If false, any pre-existing values in the
parameter list will be preserved. Default value is true, i.e., any
pre-existing values may be overwritten.
*/
int SetDefaults(std::string ProblemType, Teuchos::ParameterList & List,
int * options = 0, double * params = 0, const bool OverWrite=true);
//! Sets default parameters for aggregation-based 2-level domain decomposition preconditioners.
int SetDefaultsDD(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for aggregation-based 2-level domain decomposition preconditioners, using LU on each subdomain
int SetDefaultsDD_LU(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for aggregation-based 3-level domain decomposition preconditioners.
int SetDefaultsDD_3Levels(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for aggregation-based 3-level domain decomposition preconditioners with LU.
int SetDefaultsDD_3Levels_LU(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for the eddy current equations equations.
int SetDefaultsMaxwell(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for classical smoothed aggregation.
int SetDefaultsSA(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets defaults for energy minimization preconditioning for nonsymmetric problems.
int SetDefaultsNSSA(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Reads in parameter list options from file.
int ReadXML(const std::string &FileName, Teuchos::ParameterList &List,
const Epetra_Comm &Comm);
//! Enumerated type indicating the type of AMG solver to be used.
enum AMGType {
ML_SA_FAMILY, /*< Smoothed aggregation solver including EMIN,NSA */
ML_MAXWELL, /*< Old Maxwell solver */
ML_COMPOSITE /*< Composite AMG: block diagonal prolongator */
};
/*!
\brief MultiLevelPreconditioner: a class to define black-box multilevel preconditioners using aggregation methods.
Class ML_Epetra::MultiLevelPreconditioner defined black-box algebraic
multilevel preconditioners of matrices defined as Epetra_RowMatrix derived
objects. The resulting preconditioner can be used in AztecOO, and in any
other solver that accepts Epetra_Operator derived objects, and apply the
action of the given Epetra_Operator using ApplyInverse().
Please refer to the user's guide for a detailed introduction to
this class, examples, and description of input parameters.
This file requires ML to be configured with the following options:
- \c --enable-epetra
- \c --enable-teuchos
The following option is suggested:
- \c --enable-amesos
- \c --enable-ifpack
Some part of this class needs the following options:
- \c --enable-aztecoo
- \c --enable-anasazi
It is important to note that ML is more restrictive than Epetra for
the definition of maps. It is required that RowMatrixRowMap() is equal
to OperatorRangeMap(). This is because ML needs to perform matrix-std::vector
product, as well as getrow() functions, on the same data distribution.
Also, for square matrices, OperatorDomainMap() must be as
OperatorRangeMap().
Several examples are provided in the \c examples subdirectories:
- \ref ml_preconditioner_cpp is an introductory
example;
- \ref ml_2level_DD_cpp shows how to
define a 2-level domain decomposition preconditioner using
this class;
- \ref ml_viz_cpp details how to visualize the aggregates;
- \ref ml_maxwell_cpp reports how to
use this class for Maxwell problems.
\note
Namespace ML_Epetra contains another Epetra_Operator derived class,
ML_Epetra::MultiLevelOperator.
- you should use MultiLevelOperator
when your code already defines the required ML objects, with the optimal
choice of parameters, and you just want to wrap the already defined ML
preconditioners for AztecOO problems;
- you should use MultiLevelPreconditioner
when you have an Epetra_RowMatrix, and you don't want to code the
conversion to ML_Operator, the creation of the hierarchy and the
aggregates, and/or you want to experiment various combinations of the
parameters, simply changing some parameters in a Teuchos::ParameterList.
Defaults parameters can be specified using function SetDefaults().
\author Marzio Sala, SNL 9214
*/
class MultiLevelPreconditioner : public virtual Epetra_Operator {
public:
//@{ \name Constructors.
//! Constructs a MultiLevelPreconditioner with default values.
MultiLevelPreconditioner(const Epetra_RowMatrix & RowMatrix,
const bool ComputePrec = true);
//! Constructs a MultiLevelPreconditioner. Retrieves parameters from \c List.
MultiLevelPreconditioner(const Epetra_RowMatrix & RowMatrix,
const Teuchos::ParameterList & List,
const bool ComputePrec = true);
//! Constructs a MultiLevelPreconditioner from an ML_Operator. Retrieves parameters from \c List.
MultiLevelPreconditioner(ML_Operator* Operator,
const Teuchos::ParameterList& List,
const bool ComputePrec = true);
//! Constructs a MultiLevelPreconditioner which is actually a composite AMG hierarchy using an array of ML_Operator's and an array of parameter lists.
MultiLevelPreconditioner(ML_Operator *Operator,
const Teuchos::ParameterList& List,
Epetra_RowMatrix **DiagOperators,
Teuchos::ParameterList *DiagLists,
int NBlocks = 1,
const bool ComputePrec = true);
//! \brief MultiLevelPreconditioner constructor for Maxwell's equations.
/*! Takes the stiffness and mass terms of the matrix combined.
\param EdgeMatrix - (In) Linear matrix to be solved.
\param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
topological gradient
\param NodeMatrix - (In) Auxiliary nodal finite element matrix
\param List - (In) Teuchos parameter list containing solver options.
\param ComputePrec - (In) Optional argument that specifies whether to
create preconditioner immediately.
Default is true.
\param UseNodeMatrixForSmoother - (In) Use the nodal matrix for the nodal
portion of the Hipmair smoother (if used).
*/
MultiLevelPreconditioner(const Epetra_RowMatrix& EdgeMatrix,
const Epetra_RowMatrix& GradMatrix,
const Epetra_RowMatrix& NodeMatrix,
const Teuchos::ParameterList& List,
const bool ComputePrec = true,
const bool UseNodeMatrixForSmoother = false);
//! \brief MultiLevelPreconditioner constructor for Maxwell's equations.
/*! Takes the stiffness and mass terms of the matrix separately.
\param CurlCurlMatrix - (In) The curl-curl (stiffness) term of the
matrix to be solved.
\param MassMatrix - (In) The mass term of the matrix to be solved.
\param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
topological gradient
\param NodeMatrix - (In) Auxiliary nodal finite element matrix
\param List - (In) Teuchos parameter list containing solver options.
\param ComputePrec - (In) Optional argument that specifies whether to
create preconditioner immediately.
Default is true.
*/
MultiLevelPreconditioner(const Epetra_RowMatrix & CurlCurlMatrix,
const Epetra_RowMatrix & MassMatrix,
const Epetra_RowMatrix & TMatrix,
const Epetra_RowMatrix & NodeMatrix,
const Teuchos::ParameterList & List,
const bool ComputePrec = true);
#define NewStuff
#ifdef NewStuff
//! Constructs a MultiLevelPreconditioner for multiphysics with variable dofs per node
MultiLevelPreconditioner(Epetra_RowMatrix & RowMatrix,
const Teuchos::ParameterList & List,
const int & nNodes,
const int & maxDofPerNode,
bool * dofPresent,
Epetra_Vector & Lhs,
Epetra_Vector & Rhs,
const bool rhsAndsolProvided,
const bool ComputePrec = true);
// ================================================ ====== ==== ==== == =
/*! Constructor for scalar PDE problems based on applying AMG to the distance
* Laplacian operator when constructing grid transfers. The main unique
* feature is that there may be some dofs that correspond to the same node
* location. These shared dofs fall into two categories. If these dofs are
* strongly connected to each other (as determined by tol), they are
* explicitly elminated from the Laplacian (merged into a supernode). Once
* a P is obtained, this P is then expanded to account for shared nodes
* by simply duplicating the supernodes row of P for each of the individual
* vertices that contribute to the supernode. If share dofs are weakly
* connected (or not connected at all), nothing special is done (other than
* the ususal ignoring of weak connections). One last trick is employed,
* connections between supernodes and non-supernodes (i.e., regular nodes)
* are always assumed to be weak. Shared nodes are often used to capture
* interfaces or other features. By breaking these connections, the AMG
* can better maintain these features throughout the hierarchy. Finally, the
* constructor also allows for * the removal of column nonzeros associated
* with Dirichlet points. To use this option the rhs and initial guess must be
* provided. Modification of the matrix, rhs, and initial guess must be
* allowable to use this option.
*/
MultiLevelPreconditioner(Epetra_RowMatrix & RowMatrix,
const Teuchos::ParameterList & List,
const double distTol, // two points are at the same location when
// || (x_1,y_1,z_1) - (x_2,y_2,z_2)||_2 < distTol
const double tol, // ignore values when
// A(i,j)^2 < A(i,i)*A(j,j)*tol^2
Epetra_Vector & Lhs,
Epetra_Vector & Rhs,
const bool rhsAndsolProvided,
const bool ComputePrec = true);
#endif
#ifdef HAVE_ML_AZTECOO
//! MultiLevelPreconditioner constructor for Maxwell's equations.
/*! Takes the stiffness and mass terms of the matrix combined. The edge
matrix is of type Epetra_Msr, a light-weight wrapper for old-style Aztec
MSR matrices. This is intended as transition code for Aztec users.
\param EdgeMatrix - (In) Linear matrix to be solved.
\param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
topological gradient
\param NodeMatrix - (In) Auxiliary nodal finite element matrix
\param proc_config - (In) Aztec array specifying processor layout.
\param List - (In) Teuchos parameter list containing solver options.
\param ComputePrec - (In) Optional argument that specifies whether to
create preconditioner immediately.
Default is true.
*/
MultiLevelPreconditioner(const Epetra_MsrMatrix & EdgeMatrix,
ML_Operator * GradMatrix,
AZ_MATRIX * NodeMatrix,
int * proc_config,
const Teuchos::ParameterList & List,
const bool ComputePrec = true);
#endif
//@}
//@{ \name Destructor.
//! Destroys the preconditioner.
virtual ~MultiLevelPreconditioner() {
if (IsComputePreconditionerOK_)
DestroyPreconditioner();
}
//@}
//@{ \name Query functions
//! Prints label associated to this object.
const char* Label() const{return(Label_);};
//! Prints unused parameters in the input ParameterList on standard output.
void PrintUnused() const
{
List_.unused(std::cout);
}
//! Prints unused parameters in the input ParameterList on the specified stream.
void PrintUnused(std::ostream & os) const
{
List_.unused(os);
}
//! Prints unused parameters in the input ParameterList to std::cout on proc \c MyPID.
/*! Mispelled parameters are simply ignored. Therefore, it is often the best
* choice to print out the parameters that have not been used in the
* construction phase.
* - \param MyPID (In) : ID of process that should print the unused parameters.
*/
void PrintUnused(const int MyPID) const;
//! Gets a reference to the internally stored parameters' list.
Teuchos::ParameterList& GetList()
{
return List_;
}
// Get a copy of the internally stored output list.
Teuchos::ParameterList GetOutputList()
{
return OutputList_;
}
//! Prints on \c std::cout the values of the internally stored parameter list
void PrintList();
//! Copies \c List into the internally stored parameter list object.
int SetParameterList(const Teuchos::ParameterList& List);
//@}
//@{ \name Mathematical functions.
//! Apply the inverse of the preconditioner to an Epetra_MultiVector (NOT AVAILABLE)
int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
return(-1);}
//! Apply the preconditioner to an Epetra_MultiVector X, puts the result in Y
int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//@}
//@{ \name Attribute access functions
//! Computes the multilevel hierarchy.
/*! Computes the multilevel hierarchy. This function retrives the user's defines parameters (as
specified in the input ParameterList), or takes default values otherwise, and creates the ML
objects for aggregation and hierarchy. Allocated data can be freed used DestroyPreconditioner(),
or by the destructor,
In a Newton-type procedure, several linear systems have to be solved, Often, these systems
are not too different. In this case, it might be convenient to keep the already
computed preconditioner (with hierarchy, coarse solver, smoothers), and use it to
precondition the next linear system. ML offers a way to determine whether the
already available preconditioner is "good enough" for the next linear system.
The user should proceed as follows:
- define \c "reuse: enable" == \c true
- solve the first linear system. ML tries to estimate the rate of convergence, and record it;
- change the values of the linear system matrix (but NOT its structure)
- compute the new preconditioner as \c ComputePreconditioner(true)
It is supposed that the pointer to the Epetra_RowMatrix remains constant. Currently,
it is not possible to modify this pointer (other than creating a new preconditioner)
*/
int ComputePreconditioner(const bool CheckFiltering = false);
/*! @brief Recompute the preconditioner (not implemented for Maxwell).
@param[in] keepFineLevelSmoother : If true, the fine level smoother is not recomputed. This is useful
if the smoother is expensive to create, e.g., an incomplete factorization, and the fine level matrix
has not changed.
*/
int ReComputePreconditioner(bool keepFineLevelSmoother=false);
//! Print the individual operators in the multigrid hierarchy.
void Print(int level = -2);
int ComputeAdaptivePreconditioner(int TentativeNullSpaceSize,
double* TentativeNullSpace);
//! Queries whether multilevel hierarchy has been computed or not.
int IsPreconditionerComputed() const
{
return(IsComputePreconditionerOK_);
}
// following functions are required to derive Epetra_RowMatrix objects.
//! Sets ownership.
int SetOwnership(bool ownership){ ownership_ = ownership; return(-1);};
//! Sets use transpose (not implemented).
int SetUseTranspose(bool useTranspose){return(-1);}
//! Returns the infinity norm (not implemented).
double NormInf() const {return(0.0);};
//! Returns the current UseTranspose setting.
bool UseTranspose() const {return(false);};
//! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
bool HasNormInf() const{return(false);};
//! Returns a pointer to the Epetra_Comm communicator associated with this operator.
const Epetra_Comm& Comm() const{return(*Comm_);};
//! Returns the Epetra_Map object associated with the domain of this operator.
const Epetra_Map& OperatorDomainMap() const {return(*DomainMap_);};
//! Returns the Epetra_Map object associated with the range of this operator.
const Epetra_Map& OperatorRangeMap() const {return(*RangeMap_);};
//@}
//! Destroys all structures allocated in \c ComputePreconditioner() if the preconditioner has been computed.
int DestroyPreconditioner();
//! Returns a reference to the internally stored RowMatrix.
const Epetra_RowMatrix& RowMatrix() const
{
return(*RowMatrix_);
}
//! Returns a reference to RowMatrix->Map().
const Epetra_BlockMap& Map() const
{
return(RowMatrix_->Map());
}
//! Returns the global number of rows in the matrix.
int NumGlobalRows() const
{
return(RowMatrix_->NumGlobalRows());
}
//! Returns the global number of columns in the matrix.
int NumGlobalCols() const
{
return(RowMatrix_->NumGlobalCols());
}
//! Returns the local number of rows in the matrix.
int NumMyRows() const
{
return(RowMatrix_->NumMyRows());
}
//! Returns the local number of columns in the matrix.
int NumMyCols() const
{
return(RowMatrix_->NumMyCols());
}
//! Prints the computational stencil for the specified row and equation (for 2D Cartesian grids only)
/*! For problems defined on 2D Cartesian grids (with node numbering increasing
* along the x-axis), this function prints out the stencil in an intelligible
* form.
* \param nx (In) : number of nodes along the X-axis
* \param ny (In) : number of nodes along the Y-axis
* \param NodeID (In) : (local) ID of node that will be used to print the
* stencil. If set to -1, the code will automatically chose an internal node.
* Default: -1.
* \param EquationID (In) : ID of the equation that will be used to print the
* stencil (default = 0)
*/
int PrintStencil2D(const int nx, const int ny,
int NodeID = -1,
const int EquationID = 0);
//! Cheap analysis of each level matrix.
int AnalyzeHierarchy(const bool AnalyzeMatrices,
const int PreCycles, const int PostCycles,
const int MLCycles);
//! Analyze the effect of each level's smoother on a random std::vector.
int AnalyzeSmoothers(const int NumPreCycles = 1,
const int NumPostCycles = 1);
//! Analyze the effect of the coarse solver on a random std::vector.
int AnalyzeCoarse();
//! Analyze the effect of the ML cycle on a random std::vector.
int AnalyzeCycle(const int NumCycles = 1);
//! Test several smoothers on fine-level matrix.
int TestSmoothers(Teuchos::ParameterList& InputList,
const bool IsSymmetric = false);
//! Test several smoothers on fine-level matrix using the current parameters.
int TestSmoothers(const bool IsSymmetric = false) {
return(TestSmoothers(List_,IsSymmetric));
}
//! Returns a pointer to the internally stored ml pointer
const ML* GetML(const int WhichML= -1) const
{
if (WhichML < 0)
return ml_;
else if (WhichML == 0)
return ml_nodes_;
else
return(0);
}
//! Returns a pointer to the internally stored agg pointer
const ML_Aggregate* GetML_Aggregate() const
{
return agg_;
}
//! Generic interface to visualization methods.
int Visualize(bool VizAggre, bool VizPreSmoother,
bool VizPostSmoother, bool VizCycle,
int NumApplPreSmoother, int NumApplPostSmoother,
int NumCycleSmoother);
//! Visualizes the shape of the aggregates.
int VisualizeAggregates();
//! Visualizes the effect of smoothers on a random std::vector.
int VisualizeSmoothers(int NumPrecCycles = 1,
int NumPostCycles = 1);
//! Visualizes the effect of the ML cycle on a random std::vector.
int VisualizeCycle(int NumCycles = 1);
/*! Creates label for this object (printed out by AztecOO). This does not
allocate/reallocate any memory.
*/
int CreateLabel();
void ReportTime();
//! Return operator complexity and #nonzeros in fine grid matrix.
void Complexities(double &complexity, double &fineNnz);
//@}
private:
//! Copy constructor (NOT DEFINED)
MultiLevelPreconditioner(const MultiLevelPreconditioner & rhs)
{};
//! operator = (NOT DEFINED)
MultiLevelPreconditioner & operator = (const MultiLevelPreconditioner & rhs)
{
return *this;
};
//@{ \name Internal setting functions
//! Initializes object with defauls values.
int Initialize();
/*! Sets smoothers.
@param[in] skipFineLevelSmoother : If true, the fine level smoother is not set. This is intended to be used in
combination with ReComputePreconditioner.
*/
int SetSmoothers(bool skipFineLevelSmoother=false);
//! Sets coarse level solvers.
int SetCoarse();
//! Sets aggregation schemes.
int SetAggregation();
//! Sets preconditioner type (usually, V-cycle).
int SetPreconditioner();
//! Sets the null space for non-Maxwell problems.
int SetNullSpace();
//! Checks correctness of null space (discrete gradient) for Maxwell problems.
//! The curl-curl and mass matrices must be supplied separately.
void CheckNullSpace();
//! Applies boundary conditions to gradient matrix. (Maxwell's equations)
void Apply_BCsToGradient( const Epetra_RowMatrix & EdgeMatrix,
const Epetra_RowMatrix & T);
//! Transforms Epetra matrix column map (if necessary) to be compatible with
/*! how ML handles column indices. Any matrix that cannot be dynamically
cast to an Epetra_CrsMatrix will not be changed.
\param A - (In) Matrix that is to be transformed.
\param transform - (In) EpetraExt widget that does the transformation.
\param matrixName - (In) Optional label for the incoming matrix.
*/
#ifdef HAVE_ML_EPETRAEXT
Epetra_RowMatrix* ModifyEpetraMatrixColMap( const Epetra_RowMatrix &A,
EpetraExt::CrsMatrix_SolverMap &transform,
const char* matrixName );
#endif
//! Destroys Preconditioner if it not needed anymore. This includes some 'filtering' checks.
int ConditionallyDestroyPreconditioner(const bool CheckPreconditioner);
//! Set the finest level matrix in the MG hierarchy
int SetFinestLevelMatrix();
//! Set pointers indicating correspondence between array entries and MG levels
int SetLevelIds(int Direction);
//! Set eigenvalue scheme to be used by ML for spectral radius
int SetEigenScheme();
//! Dump various output matrices for debugging
int MatrixDumper();
//! Recompute complexities and print them.
int ComputeAndPrintComplexities();
//! Sets prolongator smoother parameters.
int SetSmoothingDamping();
//! Sets damping parameter for classical smoothed aggregation.
int SetSmoothingDampingClassic();
#define OLD_AUX
#ifdef OLD_AUX
int CreateAuxiliaryMatrixCrs(Epetra_FECrsMatrix * & FakeMatrix);
int CreateAuxiliaryMatrixVbr(Epetra_VbrMatrix * & FakeMatrix);
#endif
int SetupCoordinates();
void PrintMem(char *fmt, int size, int, int);
void PrintMemoryUsage();
int SetFiltering();
void RandomAndZero(double *, double *, int);
//! Checks whether the previously computed preconditioner is still valuable for the newly available linear system.
/*! Used only when \c "reuse: enable" is \c true, and
* ComputePreconditioner(true) is called. */
bool CheckPreconditionerKrylov();
void VectorNorms(double*, int, double*,double*);
//@}
//@{ \name Internal data
//! Pointer to ML_Struct
ML* ml_;
//! ML communicator, convenient to have separately from ml_,
// ml_nodes_, one or all of which may be null.
ML_Comm* ml_comm_;
//! indicates the type of AMG solver to be used: ML_SA_FAMILY, ML_MAXWELL, ML_COMPOSITE
AMGType AMGSolver_;
//! ML_Aggregate, contains aggregate information
ML_Aggregate* agg_;
//! Label for this object
char* Label_;
//! User-provided label for identifying preconditioner ctor/dtor, in the case
// of multiple instances of ML_Epetra::MultiLevelPreconditioner.
std::string mlpLabel_;
//! pointer to linear system matrix
const Epetra_RowMatrix* RowMatrix_;
//! AfineML_ points to the original ML operator passed in to the block
// matrix/composite version of the constructor.
ML_Operator *AfineML_;
//! Multigrid hierarchies applied to submatrices and used in a composite
// form to define the overall AMG hierarchy
ML_Epetra::MultiLevelPreconditioner **SubMatMLPrec_;
//! specifies whether a hierarchy already exists or not.
bool IsComputePreconditionerOK_;
//! Number of levels
int NumLevels_;
//! Domain Map
const Epetra_Map* DomainMap_;
//! Range Map
const Epetra_Map* RangeMap_;
//! Epetra communicator object
const Epetra_Comm* Comm_;
bool ownership_;
//! proc_config for Aztec smoothers
int ProcConfig_[AZ_PROC_SIZE];
//! options for Aztec smoothers
Teuchos::RCP<std::vector<int> > SmootherOptions_;
//! params for Aztec smoothers
Teuchos::RCP<std::vector<double> > SmootherParams_;
//! status for Aztec smoothers
double SmootherStatus_[AZ_STATUS_SIZE];
//! List containing all input parameters.
Teuchos::ParameterList List_;
//! List containing all output parameters
Teuchos::ParameterList OutputList_;
//! Maximum number of levels
int MaxLevels_;
//! Number of applications of the ML cycle
int CycleApplications_;
//! If \c true, zero starting solution is used in the application of the cycle.
bool ZeroStartingSolution_;
//! Integer array used to easily handle ML_INCREASING and ML_DECREASING
/*! Integer array, of size MaxLevels_, that contain the ML level ID
for the first logical level, and so on for all levels. The ML level ID
of logical level L is LevelID_[L].
In this interface, all levels move from 0 to MaxLevels-1.
ML's level for interface's level i is LevelID_[i]
*/
std::vector<int> LevelID_;
//! If not NULL, contains the allocated null space std::vector
double* NullSpaceToFree_;
//! all std::cout's have this prefix (default'd in Initialize() )
std::string PrintMsg_;
//! all std::cerr's have this prefix (default'd in Initialize() )
char ErrorMsg_[80];
//! true if information has to be printed on this process
bool verbose_;
//! Number of PDE equations.
int NumPDEEqns_;
//! Number of iterations to use in profiling
int profileIterations_;
//@}
//@{ \name Composite AMG variables
//! Number of blocks making up composite operator
int NBlocks_;
//! Array of Diagonal Operators
Epetra_RowMatrix **DiagOperators_;
//! Array of Parameter lists for diagonal operators
Teuchos::ParameterList *DiagLists_;
//! special flag (currently for variable dof per node multiphysics AMG) skips smoother when building Laplacian hierarchy.
bool DontSetSmoothers_;
//@}
//@{ \name Maxwell variables
//! Main matrix for Maxwell
const Epetra_RowMatrix* EdgeMatrix_;
//! stiffness and mass matrices
const Epetra_RowMatrix* CurlCurlMatrix_;
//! true if we summed curl-curl and mass
bool CreatedEdgeMatrix_;
const Epetra_RowMatrix* MassMatrix_;
//! aux matrix for Maxwell
const Epetra_RowMatrix* NodeMatrix_;
//! T^T A T Matrix for use with Maxwell
ML_Operator* TtATMatrixML_;
bool UseNodeMatrixForSmoother_;
bool CreatedNodeMatrix_;
//! Auxiliary matrix used in intermediate step
ML_Operator* ML_Kn_;
bool CreatedML_Kn_;
//! T matrix for Maxwell
const Epetra_RowMatrix* TMatrix_;
#ifdef HAVE_ML_EPETRAEXT
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap RowMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap NodeMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap TMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap CurlCurlMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap MassMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap TtATMatrixColMapTrans_;
#endif
bool CreatedTMatrix_;
ML_Operator* TMatrixML_;
ML_Operator* TMatrixTransposeML_;
ML_Operator** Tmat_array, ** Tmat_trans_array;
ML_Operator** MassMatrix_array; // If curlcurl & mass are separate
ML_Operator** CurlCurlMatrix_array; // If curlcurl & mass are separate
//! Auxiliary ML structure for Maxwell's equations.
ML* ml_nodes_;
void** nodal_args_,** edge_args_;
//@}
//@{ \name Variables for Timing
//! Number of applications
int NumApplications_;
//! CPU time for all applications of the preconditioner
double ApplicationTime_;
bool FirstApplication_;
//@ CPU time for first application
double FirstApplicationTime_;
//! Number of construction phases
int NumConstructions_;
//! CPU time for construction of the preconditioner.
double ConstructionTime_;
//@}
// other stuff for old ML's compatibility
Epetra_CrsMatrix* RowMatrixAllocated_;
bool AllocatedRowMatrix_; // used for composite constructor only
bool AnalyzeMemory_;
int memory_[ML_MEM_SIZE];
// filtering stuff
std::vector<double> flt_NullSpace_;
ML* flt_ml_;
ML_Aggregate* flt_agg_;
// for reuse of preconditioning
double RateOfConvergence_;
}; // class MultiLevelPreconditioner
} // namespace ML_Epetra
#ifdef NewStuff
/******************************************************************************
Vector class that is used for for multiphysics multigrid on matrices with
varaible dofs per node. Didn't want anything specific to epetra, ML, and
MueLu; didn't like new/malloc features of std::vector, and I have a hard
time figuring out teuchos stuff ... so I implemented my own. The syntax
is pretty similar to std::vector, but it is more efficient from a memory
allocation perspective (though less flexible).
******************************************************************************/
enum free_s {useFree, useDelete, neither};
template <class T> class MLVec {
public:
// different constructors & destructors
MLVec();
MLVec(int mysize);
MLVec(T *startptr, T *endptr, bool okToChangePtr = false, free_s freeType = neither);
~MLVec();
int size() const; // return vector size
T *getptr(); // return pointer to start of raw vector data
void wrap(T *startptr, T *endptr,// same as above construct but allows
bool okToChangePtr = false, // one to first create an empty MLVec
free_s freeType = neither); // and then wrap it with data.
// is not invoked when MLVec goes away
void relinquishData(); // disassociates data from MLVec, so free
// is not invoked when MLVec goes away
void resize(int newSize); // change vector size. If newSize is smaller
// than size(), keep first newSize values
bool empty() const; // indicates whether vector is empty
inline T& operator [] (int index) { return data_[index]; }
inline const T& operator [] (int index) const { return data_[index]; }
private:
int size_;
T *data_;
bool okToChangePtr_; // These last few indicate the status of vector.
free_s freeType_; // This is used to see if memory can be freed,
bool getPtrInvoked_; // reallocated, or pointers can be moved.
};
// Create an empty vector
template <class T> MLVec<T>::MLVec() {
data_ = NULL; size_ = 0;
okToChangePtr_ = true; getPtrInvoked_ = false;
freeType_ = neither;
}
// Create an vector without any data but allocate space
template <class T> MLVec<T>::MLVec(int mysize) {
TEUCHOS_TEST_FOR_EXCEPTION(mysize < 0,std::logic_error,
"MLVec error, cannot create a negative size (= " << mysize << ") vector\n");
data_ = NULL; size_ = mysize;
okToChangePtr_ = true; getPtrInvoked_ = false;
freeType_ = neither;
if (size_ > 0) {
data_ = (T *) ML_allocate(sizeof(T)*size_);
TEUCHOS_TEST_FOR_EXCEPTION(data_ == NULL,std::logic_error,
"MLVec error, not enough space for vector of size " << size_ << "\n");
freeType_ = useFree;
}
}
// Create a vector that wraps existing data that starts and ends at 'start'
// and 'end' respectively. In most cases, this means that the pointers
// associated with the raw data cannot be changed, and that the raw data
// should remain when this vector goes away
template <class T> MLVec<T>::MLVec(T *start, T *end, bool okToChangePtr,
free_s freeType) {
TEUCHOS_TEST_FOR_EXCEPTION(end < start,std::logic_error,
"MLVec error, cannot create a negative size (= " << end-start<< ") vector\n");
freeType_ = freeType; okToChangePtr_ = okToChangePtr;
data_ = start; size_ = end - start;
if (size_ == 0) data_ = NULL;
getPtrInvoked_ = false;
}
template <class T> void MLVec<T>::wrap(T *start, T *end, bool okToChangePtr,
free_s freeType) {
TEUCHOS_TEST_FOR_EXCEPTION((data_ != NULL)||(size_ != 0)||(okToChangePtr_ != true)||
(getPtrInvoked_ != false)||(freeType_!= neither),
std::logic_error,
"MLVec wrap error, wrap() must be invoked on vectors created with default constructor\n");
TEUCHOS_TEST_FOR_EXCEPTION(end < start,std::logic_error,
"MLVec error, cannot create a negative size (= " << end-start<< ") vector\n");
freeType_ = freeType; okToChangePtr_ = okToChangePtr;
data_ = start; size_ = end - start;
if (size_ == 0) data_ = NULL;
getPtrInvoked_ = false;
}
template <class T> MLVec<T>::~MLVec() {
if (data_ != NULL) {
TEUCHOS_TEST_FOR_EXCEPTION(size_ == 0,std::logic_error,
"MLVec error, data pointer should be null for 0 length vectors\n");
if (okToChangePtr_ && (freeType_ == useFree)) ML_free(data_);
if (okToChangePtr_ && (freeType_ == useDelete)) delete data_;
}
}
// data_ is no longer associated with this vector. The raw data continues to
// exist. Can be used in conjunction with getptr() to first get the raw
// data out of MLVec and then effectively empty MLVec.
template <class T> void MLVec<T>::relinquishData() {
TEUCHOS_TEST_FOR_EXCEPTION((data_ != NULL) && (getPtrInvoked_ == false),
std::logic_error,"relinquishData without invoking getPtr() should lead"
" to memory leak\n");
data_ = NULL; size_ = 0;
okToChangePtr_ = true; getPtrInvoked_ = false;
freeType_ = neither;
}
template <class T> int MLVec<T>::size() const { return size_; }
template <class T> T* MLVec<T>::getptr() {getPtrInvoked_ =true; return data_;}
template <class T> bool MLVec<T>::empty() const {if (size_ > 0) return false;
else return true;}
// change the size of the vector. There are lots of restrictions as to when
// this is allowed. There are also lots of cases depending on whether the
// original vector was zero length (i.e. just allocate memory), the new vector
// is zero length (i.e. just free memory), the new vector is longer or shorter
// than the original vector.
template <class T> void MLVec<T>::resize(int newsize) {
if (newsize == size_) return;
TEUCHOS_TEST_FOR_EXCEPTION( newsize < 0,
std::logic_error,"MLVec error, cannot resize to a negative length (= " <<
newsize << ") vector \n");
TEUCHOS_TEST_FOR_EXCEPTION((newsize > size_) && (size_ > 0) &&
(freeType_ == useDelete), std::logic_error,
"MLVec error, cannot resize vector allocated with new\n");
if ( (newsize <= size_) && (size_ > 0) && (freeType_ == useDelete) &&
(okToChangePtr_) ) { size_ = newsize; return; }
if (okToChangePtr_) {
if (size_ == 0) {
if ( newsize > 0) {
data_ = (T *) ML_allocate(sizeof(T)*newsize);
TEUCHOS_TEST_FOR_EXCEPTION( data_ == NULL, std::logic_error,
"MLVec error, not enough resize space for " << newsize <<
" length vector\n");
freeType_ = useFree;
}
else data_ = NULL;
}
else {
if ( newsize > 0) {
T* newStuff = (T *) ML_allocate(sizeof(T)*newsize);
if (size_ < newsize)
for (int i = 0; i < size_; i++) newStuff[i] = data_[i];
else
for (int i = 0; i < newsize; i++) newStuff[i] = data_[i];
ML_free(data_);
data_ = newStuff;
TEUCHOS_TEST_FOR_EXCEPTION( data_ == NULL, std::logic_error,
"MLVec error, not enough resize realloc space for " << newsize <<
" length vector\n");
}
else {
if (freeType_ == useFree) { ML_free(data_); data_ = NULL; }
else if (freeType_ == useDelete) { delete data_; data_ = NULL; }
TEUCHOS_TEST_FOR_EXCEPTION( freeType_ == neither, std::logic_error,
"MLVec error, do not know how to free this vector\n");
}
}
size_ = newsize;
}
TEUCHOS_TEST_FOR_EXCEPTION(okToChangePtr_ == false, std::logic_error,
"MLVec error, not allowed to resize this type of wrapped vector\n");
}
/******************************************************************************
Data structures & functions to hide communication details associated with
epetra matrices, ML matrices, or MueLu matrices (i.e. xpetra operators).
******************************************************************************/
enum epetraOrMLOrMueLu {epetraType , mlType, mueluType};
struct wrappedCommStruct {
epetraOrMLOrMueLu whichOne;
void *data; // matrix on which communication is based
int nProcs; // total number of processors participating
int myPid;
int maxDofPerNode;
int vecSize;
};
template <class T> int nodalComm(MLVec<T>& vector, MLVec<int>& myLocalNodeIds,
struct wrappedCommStruct& framework)
{
/***************************************************************************
Performs communication to update an amalgamated/nodal vector using either
an ML style or an epetra style unamalgamated/dof matrix to define the
communication/import pattern. To do this, it utilzes myLocalNodeIds[i]
which indicates that the ith dof lies within the myLocalNodeIds[i]th
node. The ghost portion of myLocalNodeIds[] was computed by
assignGhostLocalNodeIds().
Note: As several dofs lie within each node, several of myLocalNodeIds[]'s
entries will be duplicates.
***************************************************************************/
MLVec<T> temp(myLocalNodeIds.size());
// copy from nodal vector to dof vector
for (int i = 0; i < myLocalNodeIds.size(); i++)
temp[i] = vector[ myLocalNodeIds[i]];
dofComm(temp, framework);
// copy from dof vector to nodal vector
for (int i = 0; i < myLocalNodeIds.size(); i++)
vector[ myLocalNodeIds[i]] = temp[i];
return 0;
}
template <class T> int dofComm(MLVec<T>& vector,
struct wrappedCommStruct& framework)
{
/***************************************************************************
Performs communication to update vector using either an ML style matrix
or an epetra style matrix to define the communication/import pattern.
Note: Directly utilizes the communication of the underlying matrix
as opposed to nodalComm() and dofCommUsingMlNodalMatrix(). nodalComm() uses
an unamalgamated matrix to define the communication associated with an
amalgamated matrix. dofCommUsingMlNodalMatrix() uses an amalgamated/nodal
matrix maxDofPerNode times to interpolate each dof of an unamalgamated
matrix. dofCommUsingMlNodalMatrix() assumes all nodes have maxDofPerNode
degrees-of-freedom (so it is only appropriate on coarser levels).
***************************************************************************/
MLVec<double> aCopy(vector.size());
// need to make a copy of the data as we will only use framework comm()
// functions that work with doubles
for (int i = 0; i < vector.size(); i++) aCopy[i] = (double) vector[i];
double *vectorData = aCopy.getptr();
if (framework.whichOne == mlType) {
ML_Operator *Amat = (ML_Operator *) framework.data;
// grab the data pointer
if (Amat == NULL) return 0;
if (Amat->getrow == NULL) return 0;
if (Amat->getrow->pre_comm == NULL) return 0;
ML_exchange_bdry(vectorData,Amat->getrow->pre_comm,
Amat->invec_leng,Amat->comm,ML_OVERWRITE,NULL);
}
else {
Epetra_CrsMatrix *Amat = (Epetra_CrsMatrix *) framework.data;
Epetra_RowMatrix *ArMat = (Epetra_RowMatrix *) Amat;
ML_Epetra_comm_wrapper(vectorData, (void *) ArMat);
}
for (int i = 0; i < vector.size(); i++) vector[i] = (T) aCopy[i];
return(0);
}
extern "C" int dofCommUsingMlNodalMatrix(double *data, void *widget);
extern int MLsortCols(const MLVec<int>& ARowPtr, MLVec<int>& ACols,
MLVec<double>& AVals);
extern int MLnMyGhost(struct wrappedCommStruct& framework);
extern int MLfillNodalMaps(MLVec<int> &amalgRowMap, MLVec<int> &amalgColMap,
MLVec<int> &myLocalNodeIds, int nLocalDofs,
struct wrappedCommStruct &framework,
int nLocalNodes, int nLocalPlusGhostNodes);
extern int MLcolGlobalIds(struct wrappedCommStruct& framework, MLVec<int>& myGids);
extern int MLassignGhostLocalNodeIds(MLVec<int> &myLocalNodeIds, int nLocalDofs,
int nLocalPlusGhostDofs, struct wrappedCommStruct &framework,
int &nLocalNodes, int &nLocalPlusGhostNodes);
extern int MLextractDiag(const MLVec<int>& rowPtr, const MLVec<int>& cols,
const MLVec<double>& , MLVec<double>& diagonal,
struct wrappedCommStruct &framework);
extern int MLfindDirichlets(const MLVec<int>& rowPtr, const MLVec<int>& cols,
const MLVec<double>& vals,
const MLVec<double>& diagonal,
double tol, MLVec<bool>& dirOrNot,
struct wrappedCommStruct &framework);
extern int MLrmDirichletCols(MLVec<int>& rowPtr, MLVec<int>& cols,
MLVec<double>& vals, const MLVec<double>& diagonal,
bool squeeze, MLVec<double>& solution,
MLVec<double>& rhs, const MLVec<bool>& dirOrNot,
struct wrappedCommStruct &framework);
extern int MLsqueezeOutNnzs(MLVec<int>& rowPtr, MLVec<int>& cols,
MLVec<double>& vals, const MLVec<bool>& keep);
extern int MLbuildMap(const MLVec<bool>& dofPresent, MLVec<int>& map, int NDof);
extern int MLvariableDofAmalg(int nCols, const MLVec<int>& rowPtr,
const MLVec<int>& cols, const MLVec<double>& vals,
int nNodes, int maxDofPerNode, const MLVec<int>& map,
const MLVec<double>& diag, double tol,
MLVec<int>& amalgRowPtr, MLVec<int>& amalgCols,
struct wrappedCommStruct &framework,
MLVec<int>& myLocalNodeIds);
extern int MLrmDifferentDofsCrossings(const MLVec<bool>& dofPresent,
int maxDofPerNode, MLVec<int>& rowPtr,
MLVec<int>& cols, int nCols,
struct wrappedCommStruct& framework,
MLVec<int> &myLocalNodeIds);
extern int MLbuildLaplacian(const MLVec<int>& rowPtr, const MLVec<int>& cols,
MLVec<double>& vals, const MLVec<double>& x,
const MLVec<double>& y, const MLVec<double>& z);
extern int MLunamalgP(const MLVec<int>& amalgRowPtr,
const MLVec<int>& amalgCols,
const MLVec<double>& amalgVals, int maxDofPerNode,
const MLVec<char>& status, bool fineIsPadded,
MLVec<int>& rowPtr, MLVec<int>& cols, MLVec<double>& vals);
extern int MLfindEmptyRows(const MLVec<int>& rowPtr, const MLVec<int>& cols,
const MLVec<double>& vals, MLVec<bool>& rowEmpty);
extern int MLreplaceEmptyByDirichlet(MLVec<int>& rowPtr, MLVec<int>& cols,
MLVec<double>& vals, const MLVec<bool>& colEmpty);
extern int MLfineStatus(const MLVec<bool>& dofPresent,
const MLVec<int>& map, const MLVec<bool>& dirOrNot,
MLVec<char>& status);
extern int MLcoarseStatus(const MLVec<bool>& rowEmpty,
const MLVec<bool>& dirOrNot, MLVec<char>& status);
extern int MLShove(ML_Operator *Mat, MLVec<int>& rowPtr, MLVec<int>& cols, MLVec<double>& vals, int invec_leng, int (*commfunc )(double *vec, void *data), struct wrappedCommStruct& framework, int nGhost);
extern int ZeroDist(MLVec<double>& xxx, MLVec<double>& yyy, MLVec<double>& zzz,
MLVec<int>& rowPtr, MLVec<int>& cols, MLVec<double>& vals,
MLVec<double>& diagonal, double tol, MLVec<int>& rowZeros, MLVec<int>& colZeros,
double disttol);
extern int MergeShared(MLVec<int>& cols, MLVec<int>& rowZeros, MLVec<int>& colZeros,
MLVec<int>& groupHead, MLVec<int>& groupNext);
extern int BuildNonSharedMap(MLVec<int>& newMap, MLVec<int>& groupHead, MLVec<int>& groupNext);
extern int buildCompressedA(MLVec<int>& inputRowPtr, MLVec<int>& inputCols,
MLVec<double>& inputVals, MLVec<double>& diagonal,
MLVec<int>& groupHead, MLVec<int>& groupNext,
MLVec<int>& outputRowptr, MLVec<int>& outputCols,
MLVec<int>& map, int newN, double tol);
#endif /* NewStuff */
#endif /* defined HAVE_ML_EPETRA and HAVE_ML_TEUCHOS */
#endif /* define ML_MULTILEVELPRECONDITIONER_H */
|