This file is indexed.

/usr/include/trilinos/MLAPI_MultiLevelAdaptiveSA.h is in libtrilinos-ml-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
#ifndef MLAPI_MULTILEVELADAPTIVESA_H
#define MLAPI_MULTILEVELADAPTIVESA_H

/*!
\file MLAPI_MultiLevelAdaptiveSA.h

\brief Adaptive smoothed aggregation preconditioner.

\author Marzio Sala, Ray Tuminaro, Jonathan Hu, Michael Gee, Marian Brezina.

\date Last updated on Feb-05.
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact      */
/* person and disclaimer.                                               */
/* ******************************************************************** */

#include "ml_common.h"
#include "ml_agg_genP.h"
#include "MLAPI_Error.h"
#include "MLAPI_CompObject.h"
#include "MLAPI_TimeObject.h"
#include "MLAPI_Operator.h"
#include "MLAPI_Operator_Utils.h"
#include "MLAPI_MultiVector.h"
#include "MLAPI_MultiVector_Utils.h"
#include "MLAPI_InverseOperator.h"
#include "MLAPI_Expressions.h"
#include "MLAPI_BaseOperator.h"
#include "MLAPI_Workspace.h"
#include "MLAPI_Aggregation.h"
#include "MLAPI_Eig.h"
#include <vector>

namespace MLAPI {

/*!
\class MultiLevelAdaptiveSA

\brief Black-box multilevel adaptive smoothed aggregation preconditioner.

This class implements an adaptive smoothed aggregation preconditioner.
An example of usage is reported in file \ref ml_adaptivesa.
We note that the usage of this class is slightly different from that of
MultiLevelSA.

An instance of this class can be created as follows:
\code
int NumPDEEqns = 1;
int MaxLevels = 10;
MultiLevelAdaptiveSA Prec(FineMatrix, List, NumPDEEqns, MaxLevels);
\endcode

Important methods of this class:
- The number of PDE equations on the finest level can be queried using
  GetInputNumPDEEqns().
- GetNumPDEEqns() returns the number of PDE equations on the current level.
  This value can be set via SetNumPDEEqns().
- GetNullSpace() returns a reference to the internally stored null space;
  the null space is set using SetNullSpace().
- GetMaxLevels() returns the number of levels. If called before Compute(),
  GetMaxLevels() returns the maximum number of levels used in the
  constructor, otherwise returns the actual number of levels.
- GetSmootherType() and GetCoarseType() return the smoother and coarse type.
- The number of application of the cycle in IncrementNullSpace() is given
  by GetNumItersCoarse() and GetNumItersFine().
- Methods \c A(level), \c P(level), \c R(level) and \c S(level) return a
  reference to the internally stored operators.
- Method SetList() can be used at any time to reset the internally stored
  list.

The general usage is:
- Specify the null space using SetNullSpace(NS), where NS is a MultiVector,
  then compute the hierarchy using Compute(), or
- Compute the first component of the null space using SetupInitialNullSpace().
  This will define a single-vector null space, and store it using
  SetNullSpace(NS).
- When a non-empty null space is provided, the user can increment by one
  the dimension of the null space by calling IncrementNullSpace().
- Method AdaptCompute() performs all these operations.

\author Marzio Sala, Ray Tuminaro, Jonathan Hu, Michael Gee, Marian Brezina.

\date Last updated on Mar-05.

\todo store the structure of the aggregates for all phases.
\todo Current implementation supposes zero threshold.

*/

class MultiLevelAdaptiveSA : public BaseOperator, public CompObject, public TimeObject {

public:

  // @{ \name Constructors and destructors

  //! Constructs the hierarchy for given Operator and parameters.
  MultiLevelAdaptiveSA(const Operator & FineMatrix, Teuchos::ParameterList& List,
                       const int NumPDEEqns, const int MaxLevels = 20) :
    IsComputed_(false)
  {
    FineMatrix_ = FineMatrix;
    List_ = List;
    MaxLevels_  = MaxLevels;
    SetInputNumPDEEqns(NumPDEEqns);
    SetNumPDEEqns(NumPDEEqns);

    ResizeArrays(MaxLevels);
    A(0) = FineMatrix;
  }

  //! Destructor.
  virtual ~MultiLevelAdaptiveSA()
  { }

  // @}
  // @{ \name Set and Get methods

  //! Returns a copy of the internally stored domain space.
  const Space GetOperatorDomainSpace() const
  {
    return(FineMatrix_.GetDomainSpace());
  }

  //! Returns a copy of the internally stored range space.
  const Space GetOperatorRangeSpace() const
  {
    return(FineMatrix_.GetRangeSpace());
  }

  //! Returns a copy of the internally stored domain space.
  inline const Space GetDomainSpace() const
  {
    return(FineMatrix_.GetDomainSpace());
  }

  //! Returns a copy of the internally stored range space.
  inline const Space GetRangeSpace() const
  {
    return(FineMatrix_.GetRangeSpace());
  }

  //! Returns a reference to the restriction operator of level \c i.
  inline Operator& R(const int i)
  {
    return(R_[i]);
  }

  //! Returns a reference to the restriction operator of level \c i.
  inline const Operator& R(const int i) const
  {
    return(R_[i]);
  }

  //! Returns a reference to the operator of level \c i.
  inline Operator& A(const int i)
  {
    return(A_[i]);
  }

  //! Returns a reference to the operator of level \c i.
  inline const Operator& A(const int i) const
  {
    return(A_[i]);
  }

  //! Returns a reference to the prolongator operator of level \c i.
  inline Operator& P(const int i)
  {
    return(P_[i]);
  }

  //! Returns a reference to the prolongator operator of level \c i.
  inline const Operator& P(const int i) const
  {
    return(P_[i]);
  }

  //! Returns a reference to the inverse operator of level \c i.
  inline InverseOperator& S(const int i)
  {
    return(S_[i]);
  }

  //! Returns a reference to the inverse operator of level \c i.
  inline const InverseOperator& S(const int i) const
  {
    return(S_[i]);
  }

  //! Returns the actual number of levels
  inline int GetMaxLevels() const
  {
    return(MaxLevels_);
  }

  //! Returns the actual number of levels
  inline void SetMaxLevels(const int MaxLevels)
  {
    MaxLevels_ = MaxLevels;
  }

  //! Gets a reference to the internally stored null space.
  inline const MultiVector GetNullSpace() const
  {
    return(NullSpace_);
  }

  //! Sets the null space multi-vector to \c NullSpace.
  inline void SetNullSpace(MultiVector& NullSpace)
  {
    NullSpace_ = NullSpace;
  }

  //! Returns \c true if the hierarchy has been successfully computed.
  inline bool IsComputed() const
  {
    return(IsComputed_);
  }

  //! Sets the internally stored list to \c List.
  inline void SetList(Teuchos::ParameterList& List)
  {
    List_ = List;
  }

  //! Returns the smoother solver type.
  inline std::string GetSmootherType()
  {
    return(List_.get("smoother: type", "symmetric Gauss-Seidel"));
  }

  //! Returns the coarse solver type.
  inline std::string GetCoarseType()
  {
    return(List_.get("coarse: type", "Amesos-KLU"));
  }

  //! Returns the number of PDE equations on the finest level.
  inline void SetInputNumPDEEqns(const int n)
  {
    NumPDEEqns_ = n;
  }

  //! Returns the number of PDE equations on the current level.
  inline int GetInputNumPDEEqns()
  {
    return(NumPDEEqns_);
  }

  //! Sets the number of PDE equations on the current level.
  inline int GetNumPDEEqns()
  {
    return(List_.get("PDE equations", 1));
  }

  inline void SetNumPDEEqns(const int NumPDEEqns)
  {
    List_.set("PDE equations", NumPDEEqns);
  }

  //! Returns the maximum allowed coarse size.
  inline int GetMaxCoarseSize()
  {
    return(List_.get("coarse: max size", 32));
  }

  //! Returns the maximum allowed reduction.
  inline double GetMaxReduction()
  {
    return(List_.get("adapt: max reduction", 0.1));
  }

  //! Returns the maximum number of applications on the coarser levels.
  inline int GetNumItersCoarse()
  {
    return(List_.get("adapt: iters coarse", 5));
  }

  //! Returns the maximum number of applications on the finest level.
  inline int GetNumItersFine()
  {
    return(List_.get("adapt: iters fine", 15));
  }

  //! Returns the multigrid preconditioner operator complexity.
  double GetComplexity()
  {
    double nnzFine = A_[0].GetNumGlobalNonzeros();
    double nnzTotal = nnzFine;
    for (int i = 1; i < GetMaxLevels(); i++) {
      nnzTotal += A_[i].GetNumGlobalNonzeros();
    }
    return nnzTotal / nnzFine;
  }


  // @}
  // @{ \name Hierarchy construction methods

  // ======================================================================
  //! Creates an hierarchy using the provided or default null space.
  // ======================================================================
  void Compute()
  {

    ResetTimer();
    StackPush();
    IsComputed_ = false;

    // get parameter from the input list
    SetNumPDEEqns(GetInputNumPDEEqns());

    // retrive null space
    MultiVector ThisNS = GetNullSpace();

    if (GetPrintLevel()) {
      std::cout << std::endl;
      ML_print_line("-", 80);
      std::cout << "Computing the hierarchy, input null space dimension = "
           << ThisNS.GetNumVectors() << std::endl;
    }

    // build up the default null space
    if (ThisNS.GetNumVectors() == 0) {
      ThisNS.Reshape(FineMatrix_.GetDomainSpace(),GetNumPDEEqns());
      ThisNS = 0.0;
      for (int i = 0 ; i < ThisNS.GetMyLength() ; ++i)
        for (int j = 0 ; j < GetNumPDEEqns() ;++j)
          if (i % GetNumPDEEqns() == j)
            ThisNS(i,j) = 1.0;

      SetNullSpace(ThisNS);
    }

    MultiVector NextNS;     // contains the next-level null space

    // work on increasing hierarchies only.
    A(0) = FineMatrix_;

    int level;

    for (level = 0 ; level < GetMaxLevels() - 1 ; ++level) {

      if (GetPrintLevel()) ML_print_line("-", 80);

      if (level)
        SetNumPDEEqns(ThisNS.GetNumVectors());

      // load current level into database
      List_.set("workspace: current level", level);

      GetSmoothedP(A(level), List_, ThisNS, P(level), NextNS);
      ThisNS = NextNS;

      R(level) = GetTranspose(P(level));
      A(level + 1) = GetRAP(R(level),A(level),P(level));
      S(level).Reshape(A(level), GetSmootherType(), List_);

      // break if coarse matrix is below specified tolerance
      if (A(level + 1).GetNumGlobalRows() <= GetMaxCoarseSize()) {
        ++level;
        break;
      }
    }

    // set coarse solver
    S(level).Reshape(A(level), GetCoarseType(), List_);
    SetMaxLevels(level + 1);

    // set the label
    SetLabel("SA, L = " + GetString(GetMaxLevels()) +
             ", smoother = " + GetSmootherType());

    if (GetPrintLevel()) ML_print_line("-", 80);

    IsComputed_ = true;

    StackPop();
    // FIXME: update flops!
    UpdateTime();

  }

  // ======================================================================
  //! Setup the adaptive multilevel hierarchy.
  /* Computes the multilevel hierarchy as specified by the user.
   *
   * \param UseDefaultOrSpecified - (In) if \c true, the first call to Compute()
   *                     uses either the default null space or the null space
   *                     that has been set using SetNullSpace().
   *                     If \c false, then one null space component is
   *                     computed using SetupInitialNullSpace().
   *
   * \param AdditionalCandidates - (In) Number of candidates, that is the
   *                     number of null space components that will be
   *                     computed using IncrementNullSpace(). If
   *                     \c "UseDefaultOrSpecified == false", the code computes
   *                     one additional candidate using
   *                     SetupInitialNullSpace(), and the remaining using
   *                     IncrementNullSpace().
   */
  // time is tracked within each method.
  // ======================================================================
  void AdaptCompute(const bool UseDefaultOrSpecified, int AdditionalCandidates)
  {

    StackPush();

    if (UseDefaultOrSpecified)
      Compute();
    else {
      SetupInitialNullSpace();
      Compute();
      AdditionalCandidates--;
    }

    for (int i = 0 ; i < AdditionalCandidates ; ++i) {
      IncrementNullSpace();
      Compute();
    }

    StackPop();
  }

  // ======================================================================
  //! Computes the first component of the null space.
  // ======================================================================
  void SetupInitialNullSpace()
  {
    ResetTimer();
    StackPush();

    SetNumPDEEqns(GetInputNumPDEEqns());

    if (GetPrintLevel()) {
      std::cout << std::endl;
      ML_print_line("-", 80);
      std::cout << "Computing the first null space component" << std::endl;
    }

    MultiVector NS(A_[0].GetDomainSpace());
    MultiVector NewNS;
    for (int v = 0 ; v < NS.GetNumVectors() ; ++v)
      NS.Random(v);

    NS = (NS + 1.0) / 2.0;

    // zero out everything except for first dof on every  node
    for (int j=0; j < NS.GetMyLength(); ++j)
    {
      if (j % GetNumPDEEqns() != 0)
        NS(j) = 0.;
    }

    // run pre-smoother
    MultiVector F(A(0).GetDomainSpace());
    F = 0.0;

    S(0).Reshape(A(0), GetSmootherType(), List_);
    S(0).Apply(F, NS);

    double MyEnergyBefore = sqrt((A(0) * NS) * NS);
    if (MyEnergyBefore == 0.0) {
      SetNullSpace(NewNS);
      return;
    }

    //compare last two iterates on fine level
    int SweepsBefore = List_.get("smoother: sweeps",1);
    List_.set("smoother: sweeps",1);
    S(0).Reshape(A(0), GetSmootherType(), List_);
    S(0).Apply(F, NS);
    double MyEnergyAfter = sqrt((A(0) * NS) * NS);
    if (MyEnergyAfter/MyEnergyBefore < GetMaxReduction()) {
      SetNullSpace(NewNS);
      return;
    }

    List_.set("smoother: sweeps",SweepsBefore);

    int level;
    for (level = 0 ; level < GetMaxLevels() - 2 ; ++level) {

      if (level) SetNumPDEEqns(NS.GetNumVectors());

      if (GetPrintLevel()) {
        ML_print_line("-", 80);
        std::cout << "current working level   = " << level << std::endl;
        std::cout << "number of global rows   = "
          << A(level).GetDomainSpace().GetNumGlobalElements() << std::endl;
        std::cout << "number of PDE equations = " << GetNumPDEEqns() << std::endl;
        std::cout << "null space dimension    = " << NS.GetNumVectors() << std::endl;
      }

      GetSmoothedP(A(level), List_, NS, P(level), NewNS);
      NS = NewNS;

      R(level) = GetTranspose(P(level));
      A(level + 1) = GetRAP(R(level),A(level),P(level));
      S(level + 1).Reshape(A(level + 1),GetSmootherType(),List_);

      // break if coarse matrix is below specified size
      if (A(level + 1).GetDomainSpace().GetNumGlobalElements() <= GetMaxCoarseSize()) {
        ++level;
        break;
      }

      MultiVector locF(A(level + 1).GetDomainSpace());
      locF = 0.0;
      MyEnergyBefore = sqrt((A(level + 1) * NS) * NS);
      S(level + 1).Apply(locF, NS);
      MyEnergyAfter = sqrt((A(level + 1) * NS) * NS);
      if (GetPrintLevel() == 0) {
        std::cout << "Energy before smoothing = " << MyEnergyBefore << std::endl;
        std::cout << "Energy after smoothing  = " << MyEnergyAfter << std::endl;
      }

      if (pow(MyEnergyAfter/MyEnergyBefore,1.0/SweepsBefore) < GetMaxReduction()) {
        ++level;
        break;
      }
    }

    if (GetPrintLevel())
      ML_print_line("-", 80);

    // interpolate candidate back to fine level
    int MaxLevels = level;
    for (int j = MaxLevels ; j > 0 ; --j) {
      NS = P(j - 1) * NS;
    }

    F.Reshape(A(0).GetDomainSpace());
    F = 0.0;
    S(0).Apply(F, NS);

    double norm = NS.NormInf();
    NS.Scale(1.0 / norm);

    SetNullSpace(NS);

    StackPop();
    UpdateTime();
  }

  //! Increments the null space dimension by one.
  bool IncrementNullSpace()
  {
    ResetTimer();
    StackPush();

    SetNumPDEEqns(GetInputNumPDEEqns());

    MultiVector InputNS = GetNullSpace();

    if (InputNS.GetNumVectors() == 0)
      ML_THROW("Empty null space not allowed", -1);

    if (GetPrintLevel()) {
      std::cout << std::endl;
      ML_print_line("-", 80);
      std::cout << "Incrementing the hierarchy, input null space dimension = "
           << InputNS.GetNumVectors() << std::endl;
    }

    int level;

    // =========================================================== //
    // InputNS is the currently available (and stored) null space. //
    // ExpandedNS is InputNS + AdditionalNS.                       //
    // NCand is dimension of previous nullspace.                   //
    // AdditionalNS is set to random between 0 and 1.0; however,   //
    // we might need to zero out in the new candidate everybody    //
    // but the (Ncand+1)'th guy                                    //
    // Once the new candidate is set, we run the current V-cycle   //
    // on it. NOTE: I need the final copy instruction, since the   //
    // original pointer  in AdditionalNS could have been changed   //
    // under the hood.                                             //
    // =========================================================== //

    int NCand = InputNS.GetNumVectors();
    MultiVector ExpandedNS = InputNS;
    ExpandedNS.Append();

    MultiVector AdditionalNS = Extract(ExpandedNS, NCand);
    AdditionalNS.Random();
    AdditionalNS = (AdditionalNS + 1.) / 2.0;

    if (NCand+1 <= GetNumPDEEqns())
    {
      for (int i=0; i< AdditionalNS.GetMyLength(); i++)
        if ( (i+1) % (NCand+1) != 0)
          AdditionalNS(i) = 0;
    }

    MultiVector b0(AdditionalNS.GetVectorSpace());

    for (int i=0; i< GetNumItersFine() ; i++)
      SolveMultiLevelSA(b0,AdditionalNS,0);

    double NormFirst = ExpandedNS.NormInf(0);
    AdditionalNS.Scale(NormFirst / AdditionalNS.NormInf());

    for (int i=0; i<AdditionalNS.GetMyLength(); i++)
      ExpandedNS(i,NCand) = AdditionalNS(i);

    // ===================== //
    // cycle over all levels //
    // ===================== //

    for (level = 0 ; level < GetMaxLevels() - 2 ; ++level) {

      if (GetPrintLevel()) ML_print_line("-", 80);

      List_.set("workspace: current level", level);

      // ======================================================= //
      // Create a new prolongator operator using the newly       //
      // available null space. NewNS is a temporary variable,   //
      // set to ExpandedNS for the next-level null space. We     //
      // also need to setup the smoother at this level (not on   //
      // the finest, since the finest-level matrix does not      //
      // change).                                                //
      // At this point, we stick the operators in the hierarchy. //
      // ======================================================= //

      MultiVector NewNS;

      GetSmoothedP(A(level), List_, ExpandedNS, P(level), NewNS);
      ExpandedNS = NewNS;

      R(level) = GetTranspose(P(level));
      A(level + 1) = GetRAP(R(level),A(level),P(level));

      SetNumPDEEqns(NewNS.GetNumVectors());

      if (level != 0)
        S(level).Reshape(A(level), GetSmootherType(), List_);

      S(level + 1).Reshape(A(level + 1), GetSmootherType(), List_);

      // ======================================================= //
      // Need to setup the bridge. We need to extract the NCand  //
      // components of the "old" null space, and set them in a   //
      // temporary variable, OldNS. NewNS is simply discarded.   //
      // ======================================================= //

      MultiVector OldNS = ExpandedNS;
      OldNS.Delete(NCand);

      Operator Pbridge;
      GetSmoothedP(A(level + 1), List_, OldNS, Pbridge, NewNS);

      P(level + 1) = Pbridge;
      R(level + 1) = GetTranspose(Pbridge);

      AdditionalNS = Duplicate(Extract(ExpandedNS, NCand));

      double MyEnergyBefore = sqrt((A(level + 1) * AdditionalNS) * AdditionalNS);

      // FIXME scale with something: norm of the matrix, ...;
      if (MyEnergyBefore < 1e-10) {
        ++level;
        break;
      }

      // ======================================================= //
      // run Nits_coarse cycles, using AdditionalNS as starting  //
      // solution, and a zero right hand-side.                   //
      // ======================================================= //

      b0.Reshape(AdditionalNS.GetVectorSpace());
      b0 = 0.;

      for (int i=0; i< GetNumItersCoarse() ; i++)
        SolveMultiLevelSA(b0,AdditionalNS,level+1);

      // ======================================================= //
      // Get the norm of the first null space component, then    //
      // analyze the energy after the application of the cycle.  //
      // If the energy after is zero, we have to check whether   //
      // the new guy is zero or not.                             //
      // Then, we scale the new candidate so that its largest    //
      // entry is of the same magniture of the largest entry of  //
      // the first component.                                    //
      // ======================================================= //

      double NormFirstComponent = ExpandedNS.NormInf(0);

      double MyEnergyAfter = sqrt((A(level + 1) * AdditionalNS) * AdditionalNS);

      if (MyEnergyAfter == 0.0) {
        if (AdditionalNS.NormInf() != 0.0) {
          for (int i=0; i<AdditionalNS.GetMyLength(); i++)
            ExpandedNS(i,NCand) = AdditionalNS(i);
        }
      }
      else {
        for (int i=0; i<AdditionalNS.GetMyLength(); i++) {
          ExpandedNS(i,NCand) = AdditionalNS(i);
        }
      }

      double NormExpanded = ExpandedNS.NormInf(NCand);
      ExpandedNS.Scale(NormFirstComponent / NormExpanded, NCand);

      if (GetPrintLevel() == 0) {
        std::cout << "energy before cycle =" << MyEnergyBefore << std::endl;
        std::cout << "energy after        =" << MyEnergyAfter << std::endl;
      }

      // FIXME: still to do:
      // - scaling of the new computed component

      if (pow(MyEnergyAfter/MyEnergyBefore,1.0 / GetNumItersCoarse()) < GetMaxReduction()) {
        ++level;
        break;
      }
    }

    --level;
    AdditionalNS = Extract(ExpandedNS, NCand);

    // ======================================================= //
    // project back to fine level the AdditionalNS vector.     //
    // Then, reset the number of PDE equations, and finally    //
    // set the null space of this object using SetNullSpace(). //
    // Note that at this point the hierarchy is broken, and    //
    // must be reconstructed using Compute().                  //
    // ======================================================= //

    // FIXME: put scaling on every level in here?
    for (int i=level; i>=0 ; i--) {
      AdditionalNS = P(i) * AdditionalNS;
    }

    InputNS.Append(AdditionalNS);

    SetNullSpace(InputNS);

    if (GetPrintLevel()) ML_print_line("-", 80);

    StackPop();
    UpdateTime();

    IsComputed_ = false;

    return(true);
  }

  // @}
  // @{ \name Mathematical methods

  // ======================================================================
  //! Applies the preconditioner to \c b_f, returns the result in \c x_f.
  // ======================================================================
  int Apply(const MultiVector& b_f, MultiVector& x_f) const
  {
    ResetTimer();
    StackPush();

    if (IsComputed() == false)
      ML_THROW("Method Compute() must be called", -1);

    SolveMultiLevelSA(b_f,x_f,0);

    StackPop();
    UpdateTime();

    return(0);
  }

  // ======================================================================
  //! Recursively called core of the multi level preconditioner.
  // ======================================================================
  int SolveMultiLevelSA(const MultiVector& b_f,MultiVector& x_f, int level) const
  {
    if (level == GetMaxLevels() - 1) {
      x_f = S(level) * b_f;
      return(0);
    }

    MultiVector r_f(P(level).GetRangeSpace());
    MultiVector r_c(P(level).GetDomainSpace());
    MultiVector z_c(P(level).GetDomainSpace());

    // reset flop counter
    S(level).SetFlops(0.0);
    A(level).SetFlops(0.0);
    R(level).SetFlops(0.0);
    P(level).SetFlops(0.0);

    // apply pre-smoother
    S(level).Apply(b_f,x_f);
    // new residual
    r_f = b_f - A(level) * x_f;
    // restrict to coarse
    r_c = R(level) * r_f;
    // solve coarse problem
    SolveMultiLevelSA(r_c,z_c,level + 1);
    // prolongate back and add to solution
    x_f = x_f + P(level) * z_c;
    // apply post-smoother
    S(level).Apply(b_f,x_f);

    UpdateFlops(2.0 * S(level).GetFlops());
    UpdateFlops(A(level).GetFlops());
    UpdateFlops(R(level).GetFlops());
    UpdateFlops(P(level).GetFlops());
    UpdateFlops(2.0 * x_f.GetGlobalLength());

    return(0);
  }

  // @}
  // @{ \name Miscellaneous methods

  //! Prints basic information about \c this preconditioner.
  std::ostream& Print(std::ostream& os,
                      const bool verbose = true) const
  {
    if (GetMyPID() == 0) {
      os << std::endl;
      os << "*** MLAPI::MultiLevelSA, label = `" << GetLabel() << "'" << std::endl;
      os << std::endl;
      os << "Number of levels = " << GetMaxLevels() << std::endl;
      os << "Flop count       = " << GetFlops() << std::endl;
      os << "Cumulative time  = " << GetTime() << std::endl;
      if (GetTime() != 0.0)
        os << "MFlops rate      = " << 1.0e-6 * GetFlops() / GetTime() << std::endl;
      else
        os << "MFlops rate      = 0.0" << std::endl;
      os << std::endl;

      for (int level = 0 ; level < GetMaxLevels() ; ++level) {
        ML_print_line("-", 80);
        std::cout << "Information for level   = " << level;
        std::cout << "number of global rows   = "
             << A(level).GetNumGlobalRows() << std::endl;
        std::cout << "number of global nnz    = "
             << A(level).GetNumGlobalNonzeros() << std::endl;
      }
      ML_print_line("-", 80);
    }
    return(os);
  }

  // @}

private:

  //! Returns the smoothed prolongator operator.
  void GetSmoothedP(const Operator & Aop, Teuchos::ParameterList& List, MultiVector& NS,
                    Operator& Pop, MultiVector& NewNS)
  {
    double LambdaMax;
    Operator IminusA;
    std::string EigenAnalysis = List.get("eigen-analysis: type", "Anorm");
    double Damping       = List.get("aggregation: damping", 1.333);

    Operator Ptent;

    GetPtent(Aop, List, NS, Ptent, NewNS);

    if (EigenAnalysis == "Anorm")
      LambdaMax = MaxEigAnorm(Aop,true);
    else if (EigenAnalysis == "cg")
      LambdaMax = MaxEigCG(Aop,true);
    else if (EigenAnalysis == "power-method")
      LambdaMax = MaxEigPowerMethod(Aop,true);
    else
      ML_THROW("incorrect parameter (" + EigenAnalysis + ")", -1);

    if (GetPrintLevel()) {
      std::cout << "omega                   = " << Damping << std::endl;
      std::cout << "lambda max              = " << LambdaMax << std::endl;
      std::cout << "damping factor          = " << Damping / LambdaMax << std::endl;
    }

    if (Damping != 0.0) {
      IminusA = GetJacobiIterationOperator(Aop, Damping / LambdaMax);
      Pop = IminusA * Ptent;
    }
    else
      Pop = Ptent;

    // fix the number of equations in Pop, so that GetRAP() will
    // get the correct number for C= RAP
    Pop.GetML_Operator()->num_PDEs = Ptent.GetML_Operator()->num_PDEs;

    return;
  }

  void ResizeArrays(const int MaxLevels)
  {
    A_.resize(MaxLevels);
    R_.resize(MaxLevels);
    P_.resize(MaxLevels);
    S_.resize(MaxLevels);
  }

  //! Maximum number of levels.
  int MaxLevels_;
  //! Fine-level matrix.
  Operator FineMatrix_;
  //! Contains the hierarchy of operators.
  std::vector<Operator> A_;
  //! Contains the hierarchy of restriction operators.
  std::vector<Operator> R_;
  //! Contains the hierarchy of prolongator operators.
  std::vector<Operator> P_;
  //! Contains the hierarchy of inverse operators.
  std::vector<InverseOperator> S_;
  Teuchos::ParameterList List_;
  //! Contains the current null space
  MultiVector NullSpace_;
  //! \c true if a hierarchy has been successfully computed.
  bool IsComputed_;
  //! Number of PDE equations on the finest grid.
  int NumPDEEqns_;

}; // class MultiLevelAdaptiveSA

} // namespace MLAPI
#endif