This file is indexed.

/usr/include/trilinos/Kokkos_TaskScheduler.hpp is in libtrilinos-kokkos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
//@HEADER
// ************************************************************************
// 
//                        Kokkos v. 2.0
//              Copyright (2014) Sandia Corporation
// 
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact  H. Carter Edwards (hcedwar@sandia.gov)
// 
// ************************************************************************
//@HEADER
*/

#ifndef KOKKOS_TASKPOLICY_HPP
#define KOKKOS_TASKPOLICY_HPP

//----------------------------------------------------------------------------

#include <Kokkos_Core_fwd.hpp>

// If compiling with CUDA then must be using CUDA 8 or better
// and use relocateable device code to enable the task policy.
// nvcc relocatable device code option: --relocatable-device-code=true

#if ( defined( KOKKOS_HAVE_CUDA ) )
  #if ( 8000 <= CUDA_VERSION ) && \
      defined( KOKKOS_CUDA_USE_RELOCATABLE_DEVICE_CODE )

  #define KOKKOS_ENABLE_TASKPOLICY

  #endif
#else
  #define KOKKOS_ENABLE_TASKPOLICY
#endif


#if defined( KOKKOS_ENABLE_TASKPOLICY )

//----------------------------------------------------------------------------

#include <Kokkos_MemoryPool.hpp>
#include <impl/Kokkos_Tags.hpp>
#include <impl/Kokkos_TaskQueue.hpp>

//----------------------------------------------------------------------------

namespace Kokkos {

enum TaskType { TaskTeam   = Impl::TaskBase<void,void,void>::TaskTeam
              , TaskSingle = Impl::TaskBase<void,void,void>::TaskSingle };

enum TaskPriority { TaskHighPriority    = 0
                  , TaskRegularPriority = 1
                  , TaskLowPriority     = 2 };

template< typename Space >
class TaskScheduler ;

template< typename Space >
void wait( TaskScheduler< Space > const & );

} // namespace Kokkos

//----------------------------------------------------------------------------

namespace Kokkos {
namespace Impl {

/*\brief  Implementation data for task data management, access, and execution.
 *
 *  CRTP Inheritance structure to allow static_cast from the
 *  task root type and a task's FunctorType.
 *
 *    TaskBase< Space , ResultType , FunctorType >
 *      : TaskBase< Space , ResultType , void >
 *      , FunctorType
 *      { ... };
 *
 *    TaskBase< Space , ResultType , void >
 *      : TaskBase< Space , void , void >
 *      { ... };
 */
template< typename Space , typename ResultType , typename FunctorType >
class TaskBase ;

template< typename Space >
class TaskExec ;

}} // namespace Kokkos::Impl

//----------------------------------------------------------------------------

namespace Kokkos {

/**
 *
 *  Future< space >  // value_type == void
 *  Future< value >  // space == Default
 *  Future< value , space >
 *
 */
template< typename Arg1 /* = void */ , typename Arg2 /* = void */ >
class Future {
private:

  template< typename > friend class TaskScheduler ;
  template< typename , typename > friend class Future ;
  template< typename , typename , typename > friend class Impl::TaskBase ;

  enum { Arg1_is_space  = Kokkos::Impl::is_space< Arg1 >::value };
  enum { Arg2_is_space  = Kokkos::Impl::is_space< Arg2 >::value };
  enum { Arg1_is_value  = ! Arg1_is_space &&
                          ! std::is_same< Arg1 , void >::value };
  enum { Arg2_is_value  = ! Arg2_is_space &&
                          ! std::is_same< Arg2 , void >::value };

  static_assert( ! ( Arg1_is_space && Arg2_is_space )
               , "Future cannot be given two spaces" );

  static_assert( ! ( Arg1_is_value && Arg2_is_value )
               , "Future cannot be given two value types" );

  using ValueType =
    typename std::conditional< Arg1_is_value , Arg1 ,
    typename std::conditional< Arg2_is_value , Arg2 , void
    >::type >::type ;

  using Space =
    typename std::conditional< Arg1_is_space , Arg1 ,
    typename std::conditional< Arg2_is_space , Arg2 , void
    >::type >::type ;

  using task_base  = Impl::TaskBase< Space , ValueType , void > ;
  using queue_type = Impl::TaskQueue< Space > ;

  task_base * m_task ;

  KOKKOS_INLINE_FUNCTION explicit
  Future( task_base * task ) : m_task(0)
    { if ( task ) queue_type::assign( & m_task , task ); }

  //----------------------------------------

public:

  using execution_space = typename Space::execution_space ;
  using value_type      = ValueType ;

  //----------------------------------------

  KOKKOS_INLINE_FUNCTION
  bool is_null() const { return 0 == m_task ; }

  KOKKOS_INLINE_FUNCTION
  int reference_count() const
    { return 0 != m_task ? m_task->reference_count() : 0 ; }

  //----------------------------------------

  KOKKOS_INLINE_FUNCTION
  ~Future() { if ( m_task ) queue_type::assign( & m_task , (task_base*)0 ); }

  //----------------------------------------

  KOKKOS_INLINE_FUNCTION
  constexpr Future() noexcept : m_task(0) {}

  KOKKOS_INLINE_FUNCTION
  Future( Future && rhs )
    : m_task( rhs.m_task ) { rhs.m_task = 0 ; }

  KOKKOS_INLINE_FUNCTION
  Future( const Future & rhs )
    : m_task(0)
    { if ( rhs.m_task ) queue_type::assign( & m_task , rhs.m_task ); }

  KOKKOS_INLINE_FUNCTION
  Future & operator = ( Future && rhs )
    {
      if ( m_task ) queue_type::assign( & m_task , (task_base*)0 );
      m_task = rhs.m_task ;
      rhs.m_task = 0 ;
      return *this ;
    }

  KOKKOS_INLINE_FUNCTION
  Future & operator = ( const Future & rhs )
    {
      if ( m_task || rhs.m_task ) queue_type::assign( & m_task , rhs.m_task );
      return *this ;
    }

  //----------------------------------------

  template< class A1 , class A2 >
  KOKKOS_INLINE_FUNCTION
  Future( Future<A1,A2> && rhs )
    : m_task( rhs.m_task )
    {
      static_assert
        ( std::is_same< Space , void >::value ||
          std::is_same< Space , typename Future<A1,A2>::Space >::value
        , "Assigned Futures must have the same space" );

      static_assert
        ( std::is_same< value_type , void >::value ||
          std::is_same< value_type , typename Future<A1,A2>::value_type >::value
        , "Assigned Futures must have the same value_type" );

      rhs.m_task = 0 ;
    }

  template< class A1 , class A2 >
  KOKKOS_INLINE_FUNCTION
  Future( const Future<A1,A2> & rhs )
    : m_task(0)
    {
      static_assert
        ( std::is_same< Space , void >::value ||
          std::is_same< Space , typename Future<A1,A2>::Space >::value
        , "Assigned Futures must have the same space" );

      static_assert
        ( std::is_same< value_type , void >::value ||
          std::is_same< value_type , typename Future<A1,A2>::value_type >::value
        , "Assigned Futures must have the same value_type" );

      if ( rhs.m_task ) queue_type::assign( & m_task , rhs.m_task );
    }

  template< class A1 , class A2 >
  KOKKOS_INLINE_FUNCTION
  Future & operator = ( const Future<A1,A2> & rhs )
    {
      static_assert
        ( std::is_same< Space , void >::value ||
          std::is_same< Space , typename Future<A1,A2>::Space >::value
        , "Assigned Futures must have the same space" );

      static_assert
        ( std::is_same< value_type , void >::value ||
          std::is_same< value_type , typename Future<A1,A2>::value_type >::value
        , "Assigned Futures must have the same value_type" );

      if ( m_task || rhs.m_task ) queue_type::assign( & m_task , rhs.m_task );
      return *this ;
    }

  template< class A1 , class A2 >
  KOKKOS_INLINE_FUNCTION
  Future & operator = ( Future<A1,A2> && rhs )
    {
      static_assert
        ( std::is_same< Space , void >::value ||
          std::is_same< Space , typename Future<A1,A2>::Space >::value
        , "Assigned Futures must have the same space" );

      static_assert
        ( std::is_same< value_type , void >::value ||
          std::is_same< value_type , typename Future<A1,A2>::value_type >::value
        , "Assigned Futures must have the same value_type" );

      if ( m_task ) queue_type::assign( & m_task , (task_base*) 0 );
      m_task = rhs.m_task ;
      rhs.m_task = 0 ;
      return *this ;
    }

  //----------------------------------------

  KOKKOS_INLINE_FUNCTION
  typename task_base::get_return_type
  get() const
    {
      if ( 0 == m_task ) {
        Kokkos::abort( "Kokkos:::Future::get ERROR: is_null()");
      }
      return m_task->get();
    }
};

} // namespace Kokkos

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

namespace Kokkos {

template< typename ExecSpace >
class TaskScheduler
{
private:

  using track_type = Kokkos::Impl::SharedAllocationTracker ;
  using queue_type = Kokkos::Impl::TaskQueue< ExecSpace > ;
  using task_base  = Impl::TaskBase< ExecSpace , void , void > ;

  track_type   m_track ;
  queue_type * m_queue ;

  //----------------------------------------
  // Process optional arguments to spawn and respawn functions

  KOKKOS_INLINE_FUNCTION static
  void assign( task_base * const ) {}

  // TaskTeam or TaskSingle
  template< typename ... Options >
  KOKKOS_INLINE_FUNCTION static
  void assign( task_base * const task
             , TaskType const & arg
             , Options const & ... opts )
    {
      task->m_task_type = arg ;
      assign( task , opts ... );
    }

  // TaskHighPriority or TaskRegularPriority or TaskLowPriority
  template< typename ... Options >
  KOKKOS_INLINE_FUNCTION static
  void assign( task_base * const task
             , TaskPriority const & arg
             , Options const & ... opts )
    {
      task->m_priority = arg ;
      assign( task , opts ... );
    }

  // Future for a dependence
  template< typename A1 , typename A2 , typename ... Options >
  KOKKOS_INLINE_FUNCTION static
  void assign( task_base * const task
             , Future< A1 , A2 > const & arg 
             , Options const & ... opts )
    {
      // Assign dependence to task->m_next
      // which will be processed within subsequent call to schedule.
      // Error if the dependence is reset.

      if ( 0 != Kokkos::atomic_exchange(& task->m_next, arg.m_task) ) {
        Kokkos::abort("TaskScheduler ERROR: resetting task dependence");
      }

      if ( 0 != arg.m_task ) {
        // The future may be destroyed upon returning from this call
        // so increment reference count to track this assignment.
	Kokkos::atomic_increment( &(arg.m_task->m_ref_count) );
      }

      assign( task , opts ... );
    }

  //----------------------------------------

public:

  using execution_policy = TaskScheduler ;
  using execution_space  = ExecSpace ;
  using memory_space     = typename queue_type::memory_space ;
  using member_type      = Kokkos::Impl::TaskExec< ExecSpace > ;

  KOKKOS_INLINE_FUNCTION
  TaskScheduler() : m_track(), m_queue(0) {}

  KOKKOS_INLINE_FUNCTION
  TaskScheduler( TaskScheduler && rhs ) = default ;

  KOKKOS_INLINE_FUNCTION
  TaskScheduler( TaskScheduler const & rhs ) = default ;

  KOKKOS_INLINE_FUNCTION
  TaskScheduler & operator = ( TaskScheduler && rhs ) = default ;

  KOKKOS_INLINE_FUNCTION
  TaskScheduler & operator = ( TaskScheduler const & rhs ) = default ;

  TaskScheduler( memory_space const & arg_memory_space
               , unsigned const arg_memory_pool_capacity
               , unsigned const arg_memory_pool_log2_superblock = 12 )
    : m_track()
    , m_queue(0)
    {
      typedef Kokkos::Impl::SharedAllocationRecord
        < memory_space , typename queue_type::Destroy >
          record_type ;

      record_type * record =
        record_type::allocate( arg_memory_space
                             , "TaskQueue"
                             , sizeof(queue_type)
                             );

      m_queue = new( record->data() )
        queue_type( arg_memory_space
                  , arg_memory_pool_capacity
                  , arg_memory_pool_log2_superblock );

      record->m_destroy.m_queue = m_queue ;

      m_track.assign_allocated_record_to_uninitialized( record );
    }

  //----------------------------------------
  /**\brief  Allocation size for a spawned task */
  template< typename FunctorType >
  KOKKOS_FUNCTION
  size_t spawn_allocation_size() const
    {
      using task_type  = Impl::TaskBase< execution_space
                                       , typename FunctorType::value_type
                                       , FunctorType > ;

      return m_queue->allocate_block_size( sizeof(task_type) );
    }

  /**\brief  Allocation size for a when_all aggregate */
  KOKKOS_FUNCTION
  size_t when_all_allocation_size( int narg ) const
    {
      using task_base  = Kokkos::Impl::TaskBase< ExecSpace , void , void > ;

      return m_queue->allocate_block_size( sizeof(task_base) + narg * sizeof(task_base*) );
    }

  //----------------------------------------

  /**\brief  A task spawns a task with options
   *
   *  1) High, Normal, or Low priority
   *  2) With or without dependence
   *  3) Team or Serial
   */
  template< typename FunctorType , typename ... Options >
  KOKKOS_FUNCTION
  Future< typename FunctorType::value_type , ExecSpace >
  task_spawn( FunctorType const & arg_functor 
            , Options const & ... arg_options
            ) const
    {
      using value_type  = typename FunctorType::value_type ;
      using future_type = Future< value_type , execution_space > ;
      using task_type   = Impl::TaskBase< execution_space
                                        , value_type
                                        , FunctorType > ;

      //----------------------------------------
      // Give single-thread back-ends an opportunity to clear
      // queue of ready tasks before allocating a new task

      m_queue->iff_single_thread_recursive_execute();

      //----------------------------------------

      future_type f ;

      // Allocate task from memory pool
      f.m_task =
        reinterpret_cast< task_type * >(m_queue->allocate(sizeof(task_type)));

      if ( f.m_task ) {

        // Placement new construction
        new ( f.m_task ) task_type( arg_functor );

        // Reference count starts at two
        // +1 for matching decrement when task is complete
        // +1 for future
        f.m_task->m_queue      = m_queue ;
        f.m_task->m_ref_count  = 2 ;
        f.m_task->m_alloc_size = sizeof(task_type);

        assign( f.m_task , arg_options... );

        // Spawning from within the execution space so the
        // apply function pointer is guaranteed to be valid
        f.m_task->m_apply = task_type::apply ;

        m_queue->schedule( f.m_task );
        // this task may be updated or executed at any moment
      }

      return f ;
    }

  /**\brief  The host process spawns a task with options
   *
   *  1) High, Normal, or Low priority
   *  2) With or without dependence
   *  3) Team or Serial
   */
  template< typename FunctorType , typename ... Options >
  inline
  Future< typename FunctorType::value_type , ExecSpace >
  host_spawn( FunctorType const & arg_functor 
            , Options const & ... arg_options
            ) const
    {
      using value_type  = typename FunctorType::value_type ;
      using future_type = Future< value_type , execution_space > ;
      using task_type   = Impl::TaskBase< execution_space
                                        , value_type
                                        , FunctorType > ;

      if ( m_queue == 0 ) {
        Kokkos::abort("Kokkos::TaskScheduler not initialized");
      }

      future_type f ;

      // Allocate task from memory pool
      f.m_task = 
        reinterpret_cast<task_type*>( m_queue->allocate(sizeof(task_type)) );

      if ( f.m_task ) {

        // Placement new construction
        new( f.m_task ) task_type( arg_functor );

        // Reference count starts at two:
        // +1 to match decrement when task completes
        // +1 for the future
        f.m_task->m_queue      = m_queue ;
        f.m_task->m_ref_count  = 2 ;
        f.m_task->m_alloc_size = sizeof(task_type);

        assign( f.m_task , arg_options... );

        // Potentially spawning outside execution space so the
        // apply function pointer must be obtained from execution space.
        // Required for Cuda execution space function pointer.
        queue_type::specialization::template
          proc_set_apply< FunctorType >( & f.m_task->m_apply );

        m_queue->schedule( f.m_task );
      }
      return f ;
    }

  /**\brief  Return a future that is complete
   *         when all input futures are complete.
   */
  template< typename A1 , typename A2 >
  KOKKOS_FUNCTION
  Future< ExecSpace >
  when_all( int narg , Future< A1 , A2 > const * const arg ) const
    {
      static_assert
        ( std::is_same< execution_space
                      , typename Future< A1 , A2 >::execution_space
                      >::value
        , "Future must have same execution space" );

      using future_type = Future< ExecSpace > ;
      using task_base   = Kokkos::Impl::TaskBase< ExecSpace , void , void > ;

      future_type f ;

      size_t const size  = sizeof(task_base) + narg * sizeof(task_base*);

      f.m_task =
        reinterpret_cast< task_base * >( m_queue->allocate( size ) );

      if ( f.m_task ) {

        new( f.m_task ) task_base();

        // Reference count starts at two:
        // +1 to match decrement when task completes
        // +1 for the future
        f.m_task->m_queue      = m_queue ;
        f.m_task->m_ref_count  = 2 ;
        f.m_task->m_alloc_size = size ;
        f.m_task->m_dep_count  = narg ;
        f.m_task->m_task_type  = task_base::Aggregate ;

        task_base ** const dep = f.m_task->aggregate_dependences();

        // Assign dependences to increment their reference count
        // The futures may be destroyed upon returning from this call
        // so increment reference count to track this assignment.

        for ( int i = 0 ; i < narg ; ++i ) {
          task_base * const t = dep[i] = arg[i].m_task ;
          if ( 0 != t ) {
	    Kokkos::atomic_increment( &(t->m_ref_count) );
          }
        }

        m_queue->schedule( f.m_task );
        // this when_all may be processed at any moment
      }

      return f ;
    }

  /**\brief  An executing task respawns itself with options
   *
   *  1) High, Normal, or Low priority
   *  2) With or without dependence
   */
  template< class FunctorType , typename ... Options >
  KOKKOS_FUNCTION
  void respawn( FunctorType * task_self
              , Options const & ... arg_options ) const
    {
      using value_type  = typename FunctorType::value_type ;
      using task_type   = Impl::TaskBase< execution_space
                                        , value_type
                                        , FunctorType > ;

      task_base * const zero = (task_base *) 0 ;
      task_base * const lock = (task_base *) task_base::LockTag ;
      task_type * const task = static_cast< task_type * >( task_self );

      // Precondition:
      //   task is in Executing state
      //   therefore  m_next == LockTag
      //
      // Change to m_next == 0 for no dependence

      if ( lock != Kokkos::atomic_exchange( & task->m_next, zero ) ) {
        Kokkos::abort("TaskScheduler::respawn ERROR: already respawned");
      }

      assign( task , arg_options... );

      // Postcondition:
      //   task is in Executing-Respawn state
      //   therefore  m_next == dependece or 0
    }

  //----------------------------------------

  template< typename S >
  friend
  void Kokkos::wait( Kokkos::TaskScheduler< S > const & );

  //----------------------------------------

  inline
  int allocation_capacity() const noexcept
    { return m_queue->m_memory.get_mem_size(); }

  KOKKOS_INLINE_FUNCTION
  int allocated_task_count() const noexcept
    { return m_queue->m_count_alloc ; }

  KOKKOS_INLINE_FUNCTION
  int allocated_task_count_max() const noexcept
    { return m_queue->m_max_alloc ; }

  KOKKOS_INLINE_FUNCTION
  long allocated_task_count_accum() const noexcept
    { return m_queue->m_accum_alloc ; }

};

template< typename ExecSpace >
inline
void wait( TaskScheduler< ExecSpace > const & policy )
{ policy.m_queue->execute(); }

// For backward compatibility
template< typename ExecSpace >
using
TaskPolicy = TaskScheduler< ExecSpace > ;

} // namespace Kokkos

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

#endif /* #if defined( KOKKOS_ENABLE_TASKPOLICY ) */
#endif /* #ifndef KOKKOS_TASKPOLICY_HPP */