/usr/include/trilinos/Ifpack2_TriDiContainer_def.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_TRIDICONTAINER_DEF_HPP
#define IFPACK2_TRIDICONTAINER_DEF_HPP
#include "Ifpack2_TriDiContainer_decl.hpp"
#include "Teuchos_LAPACK.hpp"
#ifdef HAVE_MPI
# include <mpi.h>
# include "Teuchos_DefaultMpiComm.hpp"
#else
# include "Teuchos_DefaultSerialComm.hpp"
#endif // HAVE_MPI
namespace Ifpack2 {
template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, true>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
const Teuchos::RCP<const import_type>& importer,
int OverlapLevel,
scalar_type DampingFactor) :
Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
DampingFactor),
ipiv_ (this->partitions_.size(), 0),
IsInitialized_ (false),
IsComputed_ (false),
scalars_ (nullptr),
scalarOffsets_ (this->numBlocks_)
{
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::toString;
TEUCHOS_TEST_FOR_EXCEPTION(
! matrix->hasColMap (), std::invalid_argument, "Ifpack2::TriDiContainer: "
"The constructor's input matrix must have a column Map.");
// Check whether the input set of local row indices is correct.
const map_type& rowMap = * (matrix->getRowMap ());
{
for(int i = 0; i < this->numBlocks_; i++)
{
Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
for(local_ordinal_type j = 0; j < this->blockRows_[i]; j++)
{
TEUCHOS_TEST_FOR_EXCEPTION(
!rowMap.isNodeLocalElement(this->partitions_[this->partitionIndices_[i] + j]),
std::invalid_argument, "Ifpack2::TriDiContainer: "
"On process " << rowMap.getComm()->getRank() << " of "
<< rowMap.getComm()->getSize() << ", in the given set of local row "
"indices localRows = " << Teuchos::toString(localRows) << ", the following "
"entries is not valid local row index on the calling process: "
<< localRows[j] << ".");
}
}
}
// FIXME (mfh 25 Aug 2013) What if the matrix's row Map has a
// different index base than zero?
//compute scalar array offsets (probably different from partitionIndices_)
local_ordinal_type scalarTotal = 0;
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
{
scalarOffsets_[i] = scalarTotal;
if(this->blockRows_[i] == 1)
scalarTotal++;
else
scalarTotal += 4 * (this->blockRows_[i] - 1);
}
//Allocate scalar arrays
scalars_ = new local_scalar_type[scalarTotal];
diagBlocks_.reserve(this->numBlocks_);
for(int i = 0; i < this->numBlocks_; i++)
diagBlocks_.emplace_back(Teuchos::View, scalars_ + scalarOffsets_[i], this->blockRows_[i]);
}
template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, true>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<local_ordinal_type>& localRows) :
Container<MatrixType> (matrix, localRows),
ipiv_ (this->partitions_.size(), 0),
IsInitialized_ (false),
IsComputed_ (false),
scalars_ (nullptr)
{
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::toString;
TEUCHOS_TEST_FOR_EXCEPTION(
!matrix->hasColMap(), std::invalid_argument, "Ifpack2::TriDiContainer: "
"The constructor's input matrix must have a column Map.");
// Check whether the input set of local row indices is correct.
const map_type& rowMap = *(matrix->getRowMap());
{
Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(0);
for(local_ordinal_type j = 0; j < this->blockRows_[0]; j++)
{
TEUCHOS_TEST_FOR_EXCEPTION(
!rowMap.isNodeLocalElement(this->partitions_[this->partitionIndices_[0] + j]),
std::invalid_argument, "Ifpack2::TriDiContainer: "
"On process " << rowMap.getComm ()->getRank () << " of "
<< rowMap.getComm ()->getSize () << ", in the given set of local row "
"indices localRows = " << Teuchos::toString (localRows) << ", the following "
"entries is not valid local row index on the calling process: "
<< localRows[j] << ".");
}
}
// FIXME (mfh 25 Aug 2013) What if the matrix's row Map has a
// different index base than zero?
//for single block, let the SerialTriDiMat own the scalar memory, as there would be no speed gain
diagBlocks_.emplace_back(this->blockRows_[0], this->blockRows_[0], true);
}
template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, true>::~TriDiContainer ()
{
if(scalars_)
delete[] scalars_;
}
template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, true>::isInitialized () const
{
return IsInitialized_;
}
template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, true>::isComputed () const
{
return IsComputed_;
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
setParameters (const Teuchos::ParameterList& /* List */)
{
// the solver doesn't currently take any parameters
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::initialize ()
{
for(int i = 0; i < this->numBlocks_; i++)
diagBlocks_[i].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
std::fill(ipiv_.begin(), ipiv_.end(), 0);
IsInitialized_ = true;
// We assume that if you called this method, you intend to recompute
// everything.
IsComputed_ = false;
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::compute ()
{
TEUCHOS_TEST_FOR_EXCEPTION(
ipiv_.size () != this->partitions_.size(), std::logic_error,
"Ifpack2::TriDiContainer::compute: ipiv_ array has the wrong size. "
"Please report this bug to the Ifpack2 developers.");
IsComputed_ = false;
if (! this->isInitialized ()) {
this->initialize ();
}
// Extract the submatrix.
extract ();
factor (); // factor the submatrix
IsComputed_ = true;
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::clearBlocks ()
{
std::vector<HostViewLocal> empty1;
std::swap(empty1, X_local);
std::vector<HostViewLocal> empty2;
std::swap(empty2, Y_local);
Container<MatrixType>::clearBlocks();
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::factor ()
{
for(int i = 0; i < this->numBlocks_; i++)
{
Teuchos::LAPACK<int, local_scalar_type> lapack;
int INFO = 0;
int* blockIpiv = (int*) ipiv_.getRawPtr() + this->partitionIndices_[i];
lapack.GTTRF (diagBlocks_[i].numRowsCols (),
diagBlocks_[i].DL(),
diagBlocks_[i].D(),
diagBlocks_[i].DU(),
diagBlocks_[i].DU2(),
blockIpiv, &INFO);
// INFO < 0 is a bug.
TEUCHOS_TEST_FOR_EXCEPTION(
INFO < 0, std::logic_error, "Ifpack2::TriDiContainer::factor: "
"LAPACK's _GTTRF (LU factorization with partial pivoting) was called "
"incorrectly. INFO = " << INFO << " < 0. "
"Please report this bug to the Ifpack2 developers.");
// INFO > 0 means the matrix is singular. This is probably an issue
// either with the choice of rows the rows we extracted, or with the
// input matrix itself.
TEUCHOS_TEST_FOR_EXCEPTION(
INFO > 0, std::runtime_error, "Ifpack2::TriDiContainer::factor: "
"LAPACK's _GTTRF (LU factorization with partial pivoting) reports that the "
"computed U factor is exactly singular. U(" << INFO << "," << INFO << ") "
"(one-based index i) is exactly zero. This probably means that the input "
"matrix has a singular diagonal block.");
}
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
applyImpl (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
local_scalar_type alpha,
local_scalar_type beta) const
{
typedef Teuchos::ScalarTraits<local_scalar_type> STS;
auto zero = STS::zero();
size_t numVecs = X.dimension_1();
size_t numRows = X.dimension_0();
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_0 () != Y.dimension_0 (),
std::logic_error, "Ifpack2::TriDiContainer::applyImpl: X and Y have "
"incompatible dimensions (" << X.dimension_0 () << " resp. "
<< Y.dimension_0 () << "). Please report this bug to "
"the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_0 () != static_cast<size_t> (diagBlocks_[blockIndex].numRowsCols()),
std::logic_error, "Ifpack2::TriDiContainer::applyImpl: The input "
"multivector X has incompatible dimensions from those of the "
"inverse operator (" << X.dimension_0 () << " vs. "
<< (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numRowsCols () : diagBlocks_[blockIndex].numRowsCols())
<< "). Please report this bug to the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
Y.dimension_0 () != static_cast<size_t> (diagBlocks_[blockIndex].numRowsCols()),
std::logic_error, "Ifpack2::TriDiContainer::applyImpl: The output "
"multivector Y has incompatible dimensions from those of the "
"inverse operator (" << Y.dimension_0 () << " vs. "
<< (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numRowsCols() : diagBlocks_[blockIndex].numRowsCols ())
<< "). Please report this bug to the Ifpack2 developers.");
if(alpha == zero) { // don't need to solve the linear system
if(beta == zero) {
// Use BLAS AXPY semantics for beta == 0: overwrite, clobbering
// any Inf or NaN values in Y (rather than multiplying them by
// zero, resulting in NaN values).
for(size_t j = 0; j < Y.dimension_1(); j++)
for(size_t i = 0; i < Y.dimension_0(); i++)
Y(i, j) = zero;
}
else { // beta != 0
for(size_t j = 0; j < Y.dimension_1(); j++)
for(size_t i = 0; i < Y.dimension_0(); i++)
Y(i, j) *= beta;
}
}
else { // alpha != 0; must solve the linear system
Teuchos::LAPACK<int, local_scalar_type> lapack;
// If beta is nonzero or Y is not constant stride, we have to use
// a temporary output multivector. It gets a copy of X, since
// GETRS overwrites its (multi)vector input with its output.
HostViewLocal Y_tmp("", numRows, numVecs);
Kokkos::deep_copy(Y_tmp, X);
scalar_type* Y_ptr = Y_tmp.ptr_on_device();
int INFO = 0;
const char trans =
(mode == Teuchos::CONJ_TRANS ? 'C' : (mode == Teuchos::TRANS ? 'T' : 'N'));
int* blockIpiv = (int*) ipiv_.getRawPtr() + this->partitionIndices_[blockIndex];
lapack.GTTRS (trans,
diagBlocks_[blockIndex].numRowsCols(),
numVecs,
diagBlocks_[blockIndex].DL(),
diagBlocks_[blockIndex].D(),
diagBlocks_[blockIndex].DU(),
diagBlocks_[blockIndex].DU2(),
blockIpiv,
Y_ptr,
stride,
&INFO);
TEUCHOS_TEST_FOR_EXCEPTION(
INFO != 0, std::runtime_error, "Ifpack2::TriDiContainer::applyImpl: "
"LAPACK's _GETRS (solve using LU factorization with partial pivoting) "
"failed with INFO = " << INFO << " != 0.");
if (beta != STS::zero ()) {
for(size_t j = 0; j < Y.dimension_1(); j++)
{
for(size_t i = 0; i < Y.dimension_0(); i++)
{
Y(i, j) *= beta;
Y(i, j) += alpha * Y_tmp(i, j);
}
}
}
else {
for(size_t j = 0; j < Y.dimension_1(); j++)
{
for(size_t i = 0; i < Y.dimension_0(); i++)
Y(i, j) = Y_tmp(i, j);
}
}
}
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
apply (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::RCP;
using Teuchos::rcp;
// The local operator might have a different Scalar type than
// MatrixType. This means that we might have to convert X and Y to
// the Tpetra::MultiVector specialization that the local operator
// wants. This class' X_ and Y_ internal fields are of the right
// type for the local operator, so we can use those as targets.
Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
TEUCHOS_TEST_FOR_EXCEPTION(
! IsComputed_, std::runtime_error, "Ifpack2::TriDiContainer::apply: "
"You must have called the compute() method before you may call apply(). "
"You may call the apply() method as many times as you want after calling "
"compute() once, but you must have called compute() at least once.");
const size_t numVecs = X.dimension_1();
if(numVecs == 0) {
return; // done! nothing to do
}
// The local operator works on a permuted subset of the local parts
// of X and Y. The subset and permutation are defined by the index
// array returned by getLocalRows(). If the permutation is trivial
// and the subset is exactly equal to the local indices, then we
// could use the local parts of X and Y exactly, without needing to
// permute. Otherwise, we have to use temporary storage to permute
// X and Y. For now, we always use temporary storage.
//
// Create temporary permuted versions of the input and output.
// (Re)allocate X_ and/or Y_ only if necessary. We'll use them to
// store the permuted versions of X resp. Y. Note that X_local has
// the domain Map of the operator, which may be a permuted subset of
// the local Map corresponding to X.getMap(). Similarly, Y_local
// has the range Map of the operator, which may be a permuted subset
// of the local Map corresponding to Y.getMap(). numRows_ here
// gives the number of rows in the row Map of the local Inverse_
// operator.
//
// FIXME (mfh 20 Aug 2013) There might be an implicit assumption
// here that the row Map and the range Map of that operator are
// the same.
//
// FIXME (mfh 20 Aug 2013) This "local permutation" functionality
// really belongs in Tpetra.
if(X_local.size() == 0)
{
//create all X_local and Y_local managed Views at once, are
//reused in subsequent apply() calls
for(int i = 0; i < this->numBlocks_; i++)
{
X_local.emplace_back("", this->blockRows_[i], numVecs);
}
for(int i = 0; i < this->numBlocks_; i++)
{
Y_local.emplace_back("", this->blockRows_[i], numVecs);
}
}
const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
mvgs.gatherViewToView (X_local[blockIndex], X, localRows);
// We must gather the contents of the output multivector Y even on
// input to applyImpl(), since the inverse operator might use it as
// an initial guess for a linear solve. We have no way of knowing
// whether it does or does not.
mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);
// Apply the local operator:
// Y_local := beta*Y_local + alpha*M^{-1}*X_local
this->applyImpl (X_local[blockIndex], Y_local[blockIndex], blockIndex, stride, mode,
as<local_scalar_type>(alpha), as<local_scalar_type>(beta));
// Scatter the permuted subset output vector Y_local back into the
// original output multivector Y.
mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
weightedApply (HostView& X,
HostView& Y,
HostView& D,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::Range1D;
using Teuchos::Ptr;
using Teuchos::ptr;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcp_const_cast;
using std::cerr;
using std::endl;
typedef Teuchos::ScalarTraits<scalar_type> STS;
// The local operator template parameter might have a different
// Scalar type than MatrixType. This means that we might have to
// convert X and Y to the Tpetra::MultiVector specialization that
// the local operator wants. This class' X_ and Y_ internal fields
// are of the right type for the local operator, so we can use those
// as targets.
Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
size_t numRows = this->blockRows_[blockIndex];
size_t numVecs = X.dimension_1();
if(numVecs == 0) {
return; // done! nothing to do
}
TEUCHOS_TEST_FOR_EXCEPTION(
! IsComputed_, std::runtime_error, "Ifpack2::TriDiContainer::"
"weightedApply: You must have called the compute() method before you may "
"call apply(). You may call the apply() method as many times as you want "
"after calling compute() once, but you must have called compute() at least "
"once.");
// The local operator works on a permuted subset of the local parts
// of X and Y. The subset and permutation are defined by the index
// array returned by getLocalRows(). If the permutation is trivial
// and the subset is exactly equal to the local indices, then we
// could use the local parts of X and Y exactly, without needing to
// permute. Otherwise, we have to use temporary storage to permute
// X and Y. For now, we always use temporary storage.
//
// Ensure we have temporary permuted versions of the input and output.
// Initialize X_ and/or Y_ if necessary. We'll use them to
// store the permuted versions of X resp. Y. Note that X_local has
// the domain Map of the operator, which may be a permuted subset of
// the local Map corresponding to X.getMap(). Similarly, Y_local
// has the range Map of the operator, which may be a permuted subset
// of the local Map corresponding to Y.getMap(). numRows_ here
// gives the number of rows in the row Map of the local operator.
//
// FIXME (mfh 20 Aug 2013) There might be an implicit assumption
// here that the row Map and the range Map of that operator are
// the same.
//
// FIXME (mfh 20 Aug 2013) This "local permutation" functionality
// really belongs in Tpetra.
if(X_local.size() == 0)
{
//create all X_local and Y_local managed Views at once, are
//reused in subsequent apply() calls
for(int i = 0; i < this->numBlocks_; i++)
{
X_local.emplace_back("", this->blockRows_[i], numVecs);
}
for(int i = 0; i < this->numBlocks_; i++)
{
Y_local.emplace_back("", this->blockRows_[i], numVecs);
}
}
ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
mvgs.gatherViewToView (X_local[blockIndex], X, localRows);
// We must gather the output multivector Y even on input to
// applyImpl(), since the local operator might use it as an initial
// guess for a linear solve. We have no way of knowing whether it
// does or does not.
mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);
// Apply the diagonal scaling D to the input X. It's our choice
// whether the result has the original input Map of X, or the
// permuted subset Map of X_local. If the latter, we also need to
// gather D into the permuted subset Map. We choose the latter, to
// save memory and computation. Thus, we do the following:
//
// 1. Gather D into a temporary vector D_local.
// 2. Create a temporary X_scaled to hold diag(D_local) * X_local.
// 3. Compute X_scaled := diag(D_loca) * X_local.
HostViewLocal D_local("", numVecs, numRows);
mvgs.gatherViewToView (D_local, D, localRows);
HostViewLocal X_scaled("", numVecs, numRows);
for(size_t i = 0; i < X_scaled.dimension_0(); i++) {
for(size_t j = 0; j < X_scaled.dimension_1(); j++) {
X_scaled(i, j) = X_local[blockIndex](i, j) * D_local(0, j);
}
}
// Y_temp will hold the result of M^{-1}*X_scaled. If beta == 0, we
// can write the result of Inverse_->apply() directly to Y_local, so
// Y_temp may alias Y_local. Otherwise, if beta != 0, we need
// temporary storage for M^{-1}*X_scaled, so Y_temp must be
// different than Y_local.
HostViewLocal Y_temp("", Y.dimension_0(), Y.dimension_1());
// Apply the local operator: Y_tmp := M^{-1} * X_scaled
applyImpl(X_scaled, Y_temp, blockIndex, stride, mode, STS::one(), STS::zero());
// Y_local := beta * Y_local + alpha * diag(D_local) * Y_temp.
//
// Note that we still use the permuted subset scaling D_local here,
// because Y_temp has the same permuted subset Map. That's good, in
// fact, because it's a subset: less data to read and multiply.
for(size_t i = 0; i < Y.dimension_0(); i++) {
for(size_t j = 0; j < Y.dimension_1(); j++) {
Y_local[blockIndex](i, j) *= beta;
Y_local[blockIndex](i, j) += alpha * D_local(i, 0) * Y_temp(i, j);
}
}
// Copy the permuted subset output vector Y_local into the original
// output multivector Y.
mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}
template<class MatrixType, class LocalScalarType>
std::ostream& TriDiContainer<MatrixType, LocalScalarType, true>::print(std::ostream& os) const
{
Teuchos::FancyOStream fos(Teuchos::rcp(&os,false));
fos.setOutputToRootOnly(0);
describe(fos);
return(os);
}
template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, true>::description() const
{
std::ostringstream oss;
oss << Teuchos::Describable::description();
if (isInitialized()) {
if (isComputed()) {
oss << "{status = initialized, computed";
}
else {
oss << "{status = initialized, not computed";
}
}
else {
oss << "{status = not initialized, not computed";
}
oss << "}";
return oss.str();
}
template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, true>::
describe (Teuchos::FancyOStream& os,
const Teuchos::EVerbosityLevel verbLevel) const
{
using std::endl;
if(verbLevel==Teuchos::VERB_NONE) return;
os << "================================================================================" << endl;
os << "Ifpack2::TriDiContainer" << endl;
os << "Number of blocks = " << this->numBlocks_ << endl;
os << "isInitialized() = " << IsInitialized_ << endl;
os << "isComputed() = " << IsComputed_ << endl;
os << "================================================================================" << endl;
os << endl;
}
template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, true>::
extract ()
{
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::toString;
auto& A = *this->inputMatrix_;
const size_t inputMatrixNumRows = A.getNodeNumRows();
// We only use the rank of the calling process and the number of MPI
// processes for generating error messages. Extraction itself is
// entirely local to each participating MPI process.
const int myRank = A.getRowMap()->getComm()->getRank();
const int numProcs = A.getRowMap()->getComm()->getSize();
// Sanity check that the local row indices to extract fall within
// the valid range of local row indices for the input matrix.
for(int i = 0; i < this->numBlocks_; i++)
{
const local_ordinal_type numRows_ = this->blockRows_[i];
Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
for(local_ordinal_type j = 0; j < numRows_; j++)
{
TEUCHOS_TEST_FOR_EXCEPTION(
localRows[j] < 0 ||
static_cast<size_t> (localRows[j]) >= inputMatrixNumRows,
std::runtime_error, "Ifpack2::TriDiContainer::extract: On process " <<
myRank << " of " << numProcs << ", localRows[j=" << j << "] = " <<
localRows[j] << ", which is out of the valid range of local row indices "
"indices [0, " << (inputMatrixNumRows - 1) << "] for the input matrix.");
}
// Convert the local row indices we want into local column indices.
// For every local row ii_local = localRows[i] we take, we also want
// to take the corresponding column. To find the corresponding
// column, we use the row Map to convert the local row index
// ii_local into a global index ii_global, and then use the column
// Map to convert ii_global into a local column index jj_local. If
// the input matrix doesn't have a column Map, we need to be using
// global indices anyway...
// We use the domain Map to exclude off-process global entries.
const map_type& globalRowMap = *(A.getRowMap());
const map_type& globalColMap = *(A.getColMap());
const map_type& globalDomMap = *(A.getDomainMap());
bool rowIndsValid = true;
bool colIndsValid = true;
Array<local_ordinal_type> localCols (numRows_);
// For error messages, collect the sets of invalid row indices and
// invalid column indices. They are otherwise not useful.
Array<local_ordinal_type> invalidLocalRowInds;
Array<global_ordinal_type> invalidGlobalColInds;
for (local_ordinal_type j = 0; j < numRows_; j++)
{
// ii_local is the (local) row index we want to look up.
const local_ordinal_type ii_local = localRows[j];
// Find the global index jj_global corresponding to ii_local.
// Global indices are the same (rather, are required to be the
// same) in all three Maps, which is why we use jj (suggesting a
// column index, which is how we will use it below).
const global_ordinal_type jj_global = globalRowMap.getGlobalElement(ii_local);
if(jj_global == Teuchos::OrdinalTraits<global_ordinal_type>::invalid())
{
// If ii_local is not a local index in the row Map on the
// calling process, that means localRows is incorrect. We've
// already checked for this in the constructor, but we might as
// well check again here, since it's cheap to do so (just an
// integer comparison, since we need jj_global anyway).
rowIndsValid = false;
invalidLocalRowInds.push_back(ii_local);
break;
}
// Exclude "off-process" entries: that is, those in the column Map
// on this process that are not in the domain Map on this process.
if(globalDomMap.isNodeGlobalElement (jj_global))
{
// jj_global is not an off-process entry. Look up its local
// index in the column Map; we want to extract this column index
// from the input matrix. If jj_global is _not_ in the column
// Map on the calling process, that could mean that the column
// in question is empty on this process. That would be bad for
// solving linear systems with the extract submatrix. We could
// solve the resulting singular linear systems in a minimum-norm
// least-squares sense, but for now we simply raise an exception.
const local_ordinal_type jj_local = globalColMap.getLocalElement(jj_global);
if(jj_local == Teuchos::OrdinalTraits<local_ordinal_type>::invalid())
{
colIndsValid = false;
invalidGlobalColInds.push_back(jj_global);
break;
}
localCols[j] = jj_local;
}
}
TEUCHOS_TEST_FOR_EXCEPTION(
!rowIndsValid, std::logic_error, "Ifpack2::TriDiContainer::extract: "
"On process " << myRank << ", at least one row index in the set of local "
"row indices given to the constructor is not a valid local row index in "
"the input matrix's row Map on this process. This should be impossible "
"because the constructor checks for this case. Here is the complete set "
"of invalid local row indices: " << toString (invalidLocalRowInds) << ". "
"Please report this bug to the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
!colIndsValid, std::runtime_error, "Ifpack2::TriDiContainer::extract: "
"On process " << myRank << ", "
"At least one row index in the set of row indices given to the constructor "
"does not have a corresponding column index in the input matrix's column "
"Map. This probably means that the column(s) in question is/are empty on "
"this process, which would make the submatrix to extract structurally "
"singular. Here is the compete set of invalid global column indices: "
<< toString (invalidGlobalColInds) << ".");
diagBlocks_[i].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
const size_t maxNumEntriesInRow = A.getNodeMaxNumRowEntries();
Array<scalar_type> val(maxNumEntriesInRow);
Array<local_ordinal_type> ind(maxNumEntriesInRow);
const local_ordinal_type INVALID = Teuchos::OrdinalTraits<local_ordinal_type>::invalid();
for(local_ordinal_type j = 0; j < numRows_; j++)
{
const local_ordinal_type localRow = localRows[j];
size_t numEntries;
A.getLocalRowCopy(localRow, ind(), val(), numEntries);
for(size_t k = 0; k < numEntries; k++)
{
const local_ordinal_type localCol = ind[k];
// Skip off-process elements
//
// FIXME (mfh 24 Aug 2013) This assumes the following:
//
// 1. The column and row Maps begin with the same set of
// on-process entries, in the same order. That is,
// on-process row and column indices are the same.
// 2. All off-process indices in the column Map of the input
// matrix occur after that initial set.
if(localCol >= 0 && static_cast<size_t> (localCol) < inputMatrixNumRows)
{
// for local column IDs, look for each ID in the list
// of columns hosted by this object
local_ordinal_type jj = INVALID;
for (local_ordinal_type kk = 0; kk < numRows_; kk++)
{
if(localRows[kk] == localCol)
jj = kk;
}
if (jj != INVALID)
diagBlocks_[i](j, jj) += val[k];
}
}
}
}
}
template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, true>::getName()
{
return "TriDi";
}
template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, false>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
const Teuchos::RCP<const import_type>& importer,
int OverlapLevel,
scalar_type DampingFactor) :
Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
DampingFactor)
{
TEUCHOS_TEST_FOR_EXCEPTION
(true, std::logic_error, "Ifpack2::TriDiContainer: Not implemented for "
"LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
<< ".");
}
template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, false>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<local_ordinal_type>& localRows) :
Container<MatrixType> (matrix, localRows)
{
TEUCHOS_TEST_FOR_EXCEPTION
(true, std::logic_error, "Ifpack2::TriDiContainer: Not implemented for "
"LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
<< ".");
}
template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, false>::~TriDiContainer () {}
template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, false>::isInitialized () const
{
return false;
}
template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, false>::isComputed () const
{
return false;
}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
setParameters (const Teuchos::ParameterList& /* List */) {}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::initialize () {}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::compute () {}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::clearBlocks () {}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::factor () {}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
applyImpl (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
local_scalar_type alpha,
local_scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
apply (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
weightedApply (HostView& X,
HostView& Y,
HostView& D,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
std::ostream& TriDiContainer<MatrixType, LocalScalarType, false>::print(std::ostream& os) const
{
return os;
}
template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, false>::description() const
{
return "";
}
template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, false>::
describe (Teuchos::FancyOStream& os,
const Teuchos::EVerbosityLevel verbLevel) const {}
template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, false>::
extract () {}
template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, false>::getName()
{
return "";
}
#define IFPACK2_TRIDICONTAINER_INSTANT(S,LO,GO,N) \
template class Ifpack2::TriDiContainer< Tpetra::RowMatrix<S, LO, GO, N>, S >;
} // namespace Ifpack2
#endif
|