This file is indexed.

/usr/include/trilinos/Ifpack2_TriDiContainer_def.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK2_TRIDICONTAINER_DEF_HPP
#define IFPACK2_TRIDICONTAINER_DEF_HPP

#include "Ifpack2_TriDiContainer_decl.hpp"
#include "Teuchos_LAPACK.hpp"

#ifdef HAVE_MPI
#  include <mpi.h>
#  include "Teuchos_DefaultMpiComm.hpp"
#else
#  include "Teuchos_DefaultSerialComm.hpp"
#endif // HAVE_MPI


namespace Ifpack2 {

template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, true>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                const Teuchos::RCP<const import_type>& importer,
                int OverlapLevel,
                scalar_type DampingFactor) :
  Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
                         DampingFactor),
  ipiv_ (this->partitions_.size(), 0),
  IsInitialized_ (false),
  IsComputed_ (false),
  scalars_ (nullptr),
  scalarOffsets_ (this->numBlocks_)
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::toString;
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! matrix->hasColMap (), std::invalid_argument, "Ifpack2::TriDiContainer: "
    "The constructor's input matrix must have a column Map.");

  // Check whether the input set of local row indices is correct.
  const map_type& rowMap = * (matrix->getRowMap ());
  {
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
      for(local_ordinal_type j = 0; j < this->blockRows_[i]; j++)
      {
        TEUCHOS_TEST_FOR_EXCEPTION(
          !rowMap.isNodeLocalElement(this->partitions_[this->partitionIndices_[i] + j]),
          std::invalid_argument, "Ifpack2::TriDiContainer: "
          "On process " << rowMap.getComm()->getRank() << " of "
          << rowMap.getComm()->getSize() << ", in the given set of local row "
          "indices localRows = " << Teuchos::toString(localRows) << ", the following "
          "entries is not valid local row index on the calling process: "
          << localRows[j] << ".");
      }
    }
  }

  // FIXME (mfh 25 Aug 2013) What if the matrix's row Map has a
  // different index base than zero?
  //compute scalar array offsets (probably different from partitionIndices_)
  local_ordinal_type scalarTotal = 0;
  for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
  {
    scalarOffsets_[i] = scalarTotal;
    if(this->blockRows_[i] == 1)
      scalarTotal++;
    else
      scalarTotal += 4 * (this->blockRows_[i] - 1);
  }
  //Allocate scalar arrays
  scalars_ = new local_scalar_type[scalarTotal];
  diagBlocks_.reserve(this->numBlocks_);
  for(int i = 0; i < this->numBlocks_; i++)
    diagBlocks_.emplace_back(Teuchos::View, scalars_ + scalarOffsets_[i], this->blockRows_[i]);
}

template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, true>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<local_ordinal_type>& localRows) :
  Container<MatrixType> (matrix, localRows),
  ipiv_ (this->partitions_.size(), 0),
  IsInitialized_ (false),
  IsComputed_ (false),
  scalars_ (nullptr)
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::toString;
  TEUCHOS_TEST_FOR_EXCEPTION(
    !matrix->hasColMap(), std::invalid_argument, "Ifpack2::TriDiContainer: "
    "The constructor's input matrix must have a column Map.");

  // Check whether the input set of local row indices is correct.
  const map_type& rowMap = *(matrix->getRowMap());
  {
    Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(0);
    for(local_ordinal_type j = 0; j < this->blockRows_[0]; j++)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(
        !rowMap.isNodeLocalElement(this->partitions_[this->partitionIndices_[0] + j]),
        std::invalid_argument, "Ifpack2::TriDiContainer: "
        "On process " << rowMap.getComm ()->getRank () << " of "
        << rowMap.getComm ()->getSize () << ", in the given set of local row "
        "indices localRows = " << Teuchos::toString (localRows) << ", the following "
        "entries is not valid local row index on the calling process: "
        << localRows[j] << ".");
    }
  }
  // FIXME (mfh 25 Aug 2013) What if the matrix's row Map has a
  // different index base than zero?
  //for single block, let the SerialTriDiMat own the scalar memory, as there would be no speed gain
  diagBlocks_.emplace_back(this->blockRows_[0], this->blockRows_[0], true);
}

template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, true>::~TriDiContainer ()
{
  if(scalars_)
    delete[] scalars_;
}

template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, true>::isInitialized () const
{
  return IsInitialized_;
}

template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, true>::isComputed () const
{
  return IsComputed_;
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
setParameters (const Teuchos::ParameterList& /* List */)
{
  // the solver doesn't currently take any parameters
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::initialize ()
{
  for(int i = 0; i < this->numBlocks_; i++)
    diagBlocks_[i].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
  std::fill(ipiv_.begin(), ipiv_.end(), 0);
  IsInitialized_ = true;
  // We assume that if you called this method, you intend to recompute
  // everything.
  IsComputed_ = false;
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::compute ()
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    ipiv_.size () != this->partitions_.size(), std::logic_error,
    "Ifpack2::TriDiContainer::compute: ipiv_ array has the wrong size.  "
    "Please report this bug to the Ifpack2 developers.");

  IsComputed_ = false;
  if (! this->isInitialized ()) {
    this->initialize ();
  }

  // Extract the submatrix.
  extract ();
  factor (); // factor the submatrix

  IsComputed_ = true;
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::clearBlocks ()
{
  std::vector<HostViewLocal> empty1;
  std::swap(empty1, X_local);
  std::vector<HostViewLocal> empty2;
  std::swap(empty2, Y_local);
  Container<MatrixType>::clearBlocks();
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::factor ()
{
  for(int i = 0; i < this->numBlocks_; i++)
  {
    Teuchos::LAPACK<int, local_scalar_type> lapack;
    int INFO = 0;
    int* blockIpiv = (int*) ipiv_.getRawPtr() + this->partitionIndices_[i];
    lapack.GTTRF (diagBlocks_[i].numRowsCols (),
                  diagBlocks_[i].DL(),
                  diagBlocks_[i].D(),
                  diagBlocks_[i].DU(),
                  diagBlocks_[i].DU2(),
                  blockIpiv, &INFO);
    // INFO < 0 is a bug.
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO < 0, std::logic_error, "Ifpack2::TriDiContainer::factor: "
      "LAPACK's _GTTRF (LU factorization with partial pivoting) was called "
      "incorrectly.  INFO = " << INFO << " < 0.  "
      "Please report this bug to the Ifpack2 developers.");
    // INFO > 0 means the matrix is singular.  This is probably an issue
    // either with the choice of rows the rows we extracted, or with the
    // input matrix itself.
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO > 0, std::runtime_error, "Ifpack2::TriDiContainer::factor: "
      "LAPACK's _GTTRF (LU factorization with partial pivoting) reports that the "
      "computed U factor is exactly singular.  U(" << INFO << "," << INFO << ") "
      "(one-based index i) is exactly zero.  This probably means that the input "
      "matrix has a singular diagonal block.");
  }
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
applyImpl (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           local_scalar_type alpha,
           local_scalar_type beta) const
{
  typedef Teuchos::ScalarTraits<local_scalar_type> STS;
  auto zero = STS::zero();
  size_t numVecs = X.dimension_1();
  size_t numRows = X.dimension_0();

  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_0 () != Y.dimension_0 (),
    std::logic_error, "Ifpack2::TriDiContainer::applyImpl: X and Y have "
    "incompatible dimensions (" << X.dimension_0 () << " resp. "
    << Y.dimension_0 () << ").  Please report this bug to "
    "the Ifpack2 developers.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_0 () != static_cast<size_t> (diagBlocks_[blockIndex].numRowsCols()),
    std::logic_error, "Ifpack2::TriDiContainer::applyImpl: The input "
    "multivector X has incompatible dimensions from those of the "
    "inverse operator (" << X.dimension_0 () << " vs. "
    << (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numRowsCols () : diagBlocks_[blockIndex].numRowsCols())
    << ").  Please report this bug to the Ifpack2 developers.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    Y.dimension_0 () != static_cast<size_t> (diagBlocks_[blockIndex].numRowsCols()),
    std::logic_error, "Ifpack2::TriDiContainer::applyImpl: The output "
    "multivector Y has incompatible dimensions from those of the "
    "inverse operator (" << Y.dimension_0 () << " vs. "
    << (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numRowsCols() : diagBlocks_[blockIndex].numRowsCols ())
    << ").  Please report this bug to the Ifpack2 developers.");

  if(alpha == zero) { // don't need to solve the linear system
    if(beta == zero) {
      // Use BLAS AXPY semantics for beta == 0: overwrite, clobbering
      // any Inf or NaN values in Y (rather than multiplying them by
      // zero, resulting in NaN values).
      for(size_t j = 0; j < Y.dimension_1(); j++)
        for(size_t i = 0; i < Y.dimension_0(); i++)
          Y(i, j) = zero;
    }
    else { // beta != 0
      for(size_t j = 0; j < Y.dimension_1(); j++)
        for(size_t i = 0; i < Y.dimension_0(); i++)
          Y(i, j) *= beta;
    }
  }
  else { // alpha != 0; must solve the linear system
    Teuchos::LAPACK<int, local_scalar_type> lapack;
    // If beta is nonzero or Y is not constant stride, we have to use
    // a temporary output multivector.  It gets a copy of X, since
    // GETRS overwrites its (multi)vector input with its output.
    HostViewLocal Y_tmp("", numRows, numVecs);
    Kokkos::deep_copy(Y_tmp, X);
    scalar_type* Y_ptr = Y_tmp.ptr_on_device();
    int INFO = 0;
    const char trans =
      (mode == Teuchos::CONJ_TRANS ? 'C' : (mode == Teuchos::TRANS ? 'T' : 'N'));
    int* blockIpiv = (int*) ipiv_.getRawPtr() + this->partitionIndices_[blockIndex];
    lapack.GTTRS (trans,
                  diagBlocks_[blockIndex].numRowsCols(),
                  numVecs,
                  diagBlocks_[blockIndex].DL(),
                  diagBlocks_[blockIndex].D(),
                  diagBlocks_[blockIndex].DU(),
                  diagBlocks_[blockIndex].DU2(),
                  blockIpiv,
                  Y_ptr,
                  stride,
                  &INFO);
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO != 0, std::runtime_error, "Ifpack2::TriDiContainer::applyImpl: "
      "LAPACK's _GETRS (solve using LU factorization with partial pivoting) "
      "failed with INFO = " << INFO << " != 0.");

    if (beta != STS::zero ()) {
      for(size_t j = 0; j < Y.dimension_1(); j++)
      {
        for(size_t i = 0; i < Y.dimension_0(); i++)
        {
          Y(i, j) *= beta;
          Y(i, j) += alpha * Y_tmp(i, j);
        }
      }
    }
    else {
      for(size_t j = 0; j < Y.dimension_1(); j++)
      {
        for(size_t i = 0; i < Y.dimension_0(); i++)
          Y(i, j) = Y_tmp(i, j);
      }
    }
  }
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
apply (HostView& X,
       HostView& Y,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const
{
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;

  // The local operator might have a different Scalar type than
  // MatrixType.  This means that we might have to convert X and Y to
  // the Tpetra::MultiVector specialization that the local operator
  // wants.  This class' X_ and Y_ internal fields are of the right
  // type for the local operator, so we can use those as targets.

  Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;

  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, "Ifpack2::TriDiContainer::apply: "
    "You must have called the compute() method before you may call apply().  "
    "You may call the apply() method as many times as you want after calling "
    "compute() once, but you must have called compute() at least once.");

  const size_t numVecs = X.dimension_1();

  if(numVecs == 0) {
    return; // done! nothing to do
  }

  // The local operator works on a permuted subset of the local parts
  // of X and Y.  The subset and permutation are defined by the index
  // array returned by getLocalRows().  If the permutation is trivial
  // and the subset is exactly equal to the local indices, then we
  // could use the local parts of X and Y exactly, without needing to
  // permute.  Otherwise, we have to use temporary storage to permute
  // X and Y.  For now, we always use temporary storage.
  //
  // Create temporary permuted versions of the input and output.
  // (Re)allocate X_ and/or Y_ only if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local Inverse_
  // operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.
  
  if(X_local.size() == 0)
  {
    //create all X_local and Y_local managed Views at once, are
    //reused in subsequent apply() calls
    for(int i = 0; i < this->numBlocks_; i++)
    {
      X_local.emplace_back("", this->blockRows_[i], numVecs);
    }
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Y_local.emplace_back("", this->blockRows_[i], numVecs);
    }
  }

  const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);

  mvgs.gatherViewToView (X_local[blockIndex], X, localRows);

  // We must gather the contents of the output multivector Y even on
  // input to applyImpl(), since the inverse operator might use it as
  // an initial guess for a linear solve.  We have no way of knowing
  // whether it does or does not.

  mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);

  // Apply the local operator:
  // Y_local := beta*Y_local + alpha*M^{-1}*X_local
  this->applyImpl (X_local[blockIndex], Y_local[blockIndex], blockIndex, stride, mode,
                   as<local_scalar_type>(alpha), as<local_scalar_type>(beta));

  // Scatter the permuted subset output vector Y_local back into the
  // original output multivector Y.
  mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, true>::
weightedApply (HostView& X, 
               HostView& Y,
               HostView& D,
               int blockIndex,
               int stride,
               Teuchos::ETransp mode,
               scalar_type alpha,
               scalar_type beta) const
{
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::Range1D;
  using Teuchos::Ptr;
  using Teuchos::ptr;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcp_const_cast;
  using std::cerr;
  using std::endl;
  typedef Teuchos::ScalarTraits<scalar_type> STS;

  // The local operator template parameter might have a different
  // Scalar type than MatrixType.  This means that we might have to
  // convert X and Y to the Tpetra::MultiVector specialization that
  // the local operator wants.  This class' X_ and Y_ internal fields
  // are of the right type for the local operator, so we can use those
  // as targets.

  Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;

  size_t numRows = this->blockRows_[blockIndex];
  size_t numVecs = X.dimension_1();

  if(numVecs == 0) {
    return; // done! nothing to do
  }

  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, "Ifpack2::TriDiContainer::"
    "weightedApply: You must have called the compute() method before you may "
    "call apply().  You may call the apply() method as many times as you want "
    "after calling compute() once, but you must have called compute() at least "
    "once.");

  // The local operator works on a permuted subset of the local parts
  // of X and Y.  The subset and permutation are defined by the index
  // array returned by getLocalRows().  If the permutation is trivial
  // and the subset is exactly equal to the local indices, then we
  // could use the local parts of X and Y exactly, without needing to
  // permute.  Otherwise, we have to use temporary storage to permute
  // X and Y.  For now, we always use temporary storage.
  //
  // Ensure we have temporary permuted versions of the input and output.
  // Initialize X_ and/or Y_ if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.
  if(X_local.size() == 0)
  {
    //create all X_local and Y_local managed Views at once, are
    //reused in subsequent apply() calls
    for(int i = 0; i < this->numBlocks_; i++)
    {
      X_local.emplace_back("", this->blockRows_[i], numVecs);
    }
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Y_local.emplace_back("", this->blockRows_[i], numVecs);
    }
  }

  ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);

  mvgs.gatherViewToView (X_local[blockIndex], X, localRows);

  // We must gather the output multivector Y even on input to
  // applyImpl(), since the local operator might use it as an initial
  // guess for a linear solve.  We have no way of knowing whether it
  // does or does not.

  mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);

  // Apply the diagonal scaling D to the input X.  It's our choice
  // whether the result has the original input Map of X, or the
  // permuted subset Map of X_local.  If the latter, we also need to
  // gather D into the permuted subset Map.  We choose the latter, to
  // save memory and computation.  Thus, we do the following:
  //
  // 1. Gather D into a temporary vector D_local.
  // 2. Create a temporary X_scaled to hold diag(D_local) * X_local.
  // 3. Compute X_scaled := diag(D_loca) * X_local.

  HostViewLocal D_local("", numVecs, numRows);

  mvgs.gatherViewToView (D_local, D, localRows);

  HostViewLocal X_scaled("", numVecs, numRows);

  for(size_t i = 0; i < X_scaled.dimension_0(); i++) {
    for(size_t j = 0; j < X_scaled.dimension_1(); j++) {
      X_scaled(i, j) = X_local[blockIndex](i, j) * D_local(0, j);
    }
  }

  // Y_temp will hold the result of M^{-1}*X_scaled.  If beta == 0, we
  // can write the result of Inverse_->apply() directly to Y_local, so
  // Y_temp may alias Y_local.  Otherwise, if beta != 0, we need
  // temporary storage for M^{-1}*X_scaled, so Y_temp must be
  // different than Y_local.
  HostViewLocal Y_temp("", Y.dimension_0(), Y.dimension_1());

  // Apply the local operator: Y_tmp := M^{-1} * X_scaled
  applyImpl(X_scaled, Y_temp, blockIndex, stride, mode, STS::one(), STS::zero());
  // Y_local := beta * Y_local + alpha * diag(D_local) * Y_temp.
  //
  // Note that we still use the permuted subset scaling D_local here,
  // because Y_temp has the same permuted subset Map.  That's good, in
  // fact, because it's a subset: less data to read and multiply.
  for(size_t i = 0; i < Y.dimension_0(); i++) {
    for(size_t j = 0; j < Y.dimension_1(); j++) {
      Y_local[blockIndex](i, j) *= beta;
      Y_local[blockIndex](i, j) += alpha * D_local(i, 0) * Y_temp(i, j);
    }
  }

  // Copy the permuted subset output vector Y_local into the original
  // output multivector Y.
  mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}

template<class MatrixType, class LocalScalarType>
std::ostream& TriDiContainer<MatrixType, LocalScalarType, true>::print(std::ostream& os) const
{
  Teuchos::FancyOStream fos(Teuchos::rcp(&os,false));
  fos.setOutputToRootOnly(0);
  describe(fos);
  return(os);
}

template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, true>::description() const
{
  std::ostringstream oss;
  oss << Teuchos::Describable::description();
  if (isInitialized()) {
    if (isComputed()) {
      oss << "{status = initialized, computed";
    }
    else {
      oss << "{status = initialized, not computed";
    }
  }
  else {
    oss << "{status = not initialized, not computed";
  }

  oss << "}";
  return oss.str();
}

template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, true>::
describe (Teuchos::FancyOStream& os,
          const Teuchos::EVerbosityLevel verbLevel) const
{
  using std::endl;
  if(verbLevel==Teuchos::VERB_NONE) return;
  os << "================================================================================" << endl;
  os << "Ifpack2::TriDiContainer" << endl;
  os << "Number of blocks        = " << this->numBlocks_ << endl;
  os << "isInitialized()         = " << IsInitialized_ << endl;
  os << "isComputed()            = " << IsComputed_ << endl;
  os << "================================================================================" << endl;
  os << endl;
}

template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, true>::
extract ()
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::toString;
  auto& A = *this->inputMatrix_;
  const size_t inputMatrixNumRows = A.getNodeNumRows();
  // We only use the rank of the calling process and the number of MPI
  // processes for generating error messages.  Extraction itself is
  // entirely local to each participating MPI process.
  const int myRank = A.getRowMap()->getComm()->getRank();
  const int numProcs = A.getRowMap()->getComm()->getSize();

  // Sanity check that the local row indices to extract fall within
  // the valid range of local row indices for the input matrix.
  for(int i = 0; i < this->numBlocks_; i++)
  {
    const local_ordinal_type numRows_ = this->blockRows_[i];
    Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
    for(local_ordinal_type j = 0; j < numRows_; j++)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(
        localRows[j] < 0 ||
        static_cast<size_t> (localRows[j]) >= inputMatrixNumRows,
        std::runtime_error, "Ifpack2::TriDiContainer::extract: On process " <<
        myRank << " of " << numProcs << ", localRows[j=" << j << "] = " <<
        localRows[j] << ", which is out of the valid range of local row indices "
        "indices [0, " << (inputMatrixNumRows - 1) << "] for the input matrix.");
    }

    // Convert the local row indices we want into local column indices.
    // For every local row ii_local = localRows[i] we take, we also want
    // to take the corresponding column.  To find the corresponding
    // column, we use the row Map to convert the local row index
    // ii_local into a global index ii_global, and then use the column
    // Map to convert ii_global into a local column index jj_local.  If
    // the input matrix doesn't have a column Map, we need to be using
    // global indices anyway...

    // We use the domain Map to exclude off-process global entries.
    const map_type& globalRowMap = *(A.getRowMap());
    const map_type& globalColMap = *(A.getColMap());
    const map_type& globalDomMap = *(A.getDomainMap());

    bool rowIndsValid = true;
    bool colIndsValid = true;
    Array<local_ordinal_type> localCols (numRows_);
    // For error messages, collect the sets of invalid row indices and
    // invalid column indices.  They are otherwise not useful.
    Array<local_ordinal_type> invalidLocalRowInds;
    Array<global_ordinal_type> invalidGlobalColInds;
    for (local_ordinal_type j = 0; j < numRows_; j++)
    {
      // ii_local is the (local) row index we want to look up.
      const local_ordinal_type ii_local = localRows[j];
      // Find the global index jj_global corresponding to ii_local.
      // Global indices are the same (rather, are required to be the
      // same) in all three Maps, which is why we use jj (suggesting a
      // column index, which is how we will use it below).
      const global_ordinal_type jj_global = globalRowMap.getGlobalElement(ii_local);
      if(jj_global == Teuchos::OrdinalTraits<global_ordinal_type>::invalid())
      {
        // If ii_local is not a local index in the row Map on the
        // calling process, that means localRows is incorrect.  We've
        // already checked for this in the constructor, but we might as
        // well check again here, since it's cheap to do so (just an
        // integer comparison, since we need jj_global anyway).
        rowIndsValid = false;
        invalidLocalRowInds.push_back(ii_local);
        break;
      }
      // Exclude "off-process" entries: that is, those in the column Map
      // on this process that are not in the domain Map on this process.
      if(globalDomMap.isNodeGlobalElement (jj_global))
      {
        // jj_global is not an off-process entry.  Look up its local
        // index in the column Map; we want to extract this column index
        // from the input matrix.  If jj_global is _not_ in the column
        // Map on the calling process, that could mean that the column
        // in question is empty on this process.  That would be bad for
        // solving linear systems with the extract submatrix.  We could
        // solve the resulting singular linear systems in a minimum-norm
        // least-squares sense, but for now we simply raise an exception.
        const local_ordinal_type jj_local = globalColMap.getLocalElement(jj_global);
        if(jj_local == Teuchos::OrdinalTraits<local_ordinal_type>::invalid())
        {
          colIndsValid = false;
          invalidGlobalColInds.push_back(jj_global);
          break;
        }
        localCols[j] = jj_local;
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
      !rowIndsValid, std::logic_error, "Ifpack2::TriDiContainer::extract: "
      "On process " << myRank << ", at least one row index in the set of local "
      "row indices given to the constructor is not a valid local row index in "
      "the input matrix's row Map on this process.  This should be impossible "
      "because the constructor checks for this case.  Here is the complete set "
      "of invalid local row indices: " << toString (invalidLocalRowInds) << ".  "
      "Please report this bug to the Ifpack2 developers.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      !colIndsValid, std::runtime_error, "Ifpack2::TriDiContainer::extract: "
      "On process " << myRank << ", "
      "At least one row index in the set of row indices given to the constructor "
      "does not have a corresponding column index in the input matrix's column "
      "Map.  This probably means that the column(s) in question is/are empty on "
      "this process, which would make the submatrix to extract structurally "
      "singular.  Here is the compete set of invalid global column indices: "
      << toString (invalidGlobalColInds) << ".");

    diagBlocks_[i].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
    const size_t maxNumEntriesInRow = A.getNodeMaxNumRowEntries();
    Array<scalar_type> val(maxNumEntriesInRow);
    Array<local_ordinal_type> ind(maxNumEntriesInRow);

    const local_ordinal_type INVALID = Teuchos::OrdinalTraits<local_ordinal_type>::invalid();
    for(local_ordinal_type j = 0; j < numRows_; j++)
    {
      const local_ordinal_type localRow = localRows[j];
      size_t numEntries;
      A.getLocalRowCopy(localRow, ind(), val(), numEntries);

      for(size_t k = 0; k < numEntries; k++)
      {
        const local_ordinal_type localCol = ind[k];

        // Skip off-process elements
        //
        // FIXME (mfh 24 Aug 2013) This assumes the following:
        //
        // 1. The column and row Maps begin with the same set of
        //    on-process entries, in the same order.  That is,
        //    on-process row and column indices are the same.
        // 2. All off-process indices in the column Map of the input
        //    matrix occur after that initial set.
        if(localCol >= 0 && static_cast<size_t> (localCol) < inputMatrixNumRows)
        {
          // for local column IDs, look for each ID in the list
          // of columns hosted by this object
          local_ordinal_type jj = INVALID;
          for (local_ordinal_type kk = 0; kk < numRows_; kk++)
          {
            if(localRows[kk] == localCol)
              jj = kk;
          }
          if (jj != INVALID)
            diagBlocks_[i](j, jj) += val[k];
        }
      }
    }
  }
}

template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, true>::getName()
{
  return "TriDi";
}

template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, false>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                const Teuchos::RCP<const import_type>& importer,
                int OverlapLevel,
                scalar_type DampingFactor) :
  Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
                         DampingFactor)
{
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "Ifpack2::TriDiContainer: Not implemented for "
     "LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
     << ".");
}

template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, false>::
TriDiContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<local_ordinal_type>& localRows) :
  Container<MatrixType> (matrix, localRows)
{
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "Ifpack2::TriDiContainer: Not implemented for "
     "LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
     << ".");
}

template<class MatrixType, class LocalScalarType>
TriDiContainer<MatrixType, LocalScalarType, false>::~TriDiContainer () {}

template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, false>::isInitialized () const
{
  return false;
}

template<class MatrixType, class LocalScalarType>
bool TriDiContainer<MatrixType, LocalScalarType, false>::isComputed () const
{
  return false;
}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
setParameters (const Teuchos::ParameterList& /* List */) {}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::initialize () {}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::compute () {}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::clearBlocks () {}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::factor () {}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
applyImpl (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           local_scalar_type alpha,
           local_scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
apply (HostView& X,
       HostView& Y,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void TriDiContainer<MatrixType, LocalScalarType, false>::
weightedApply (HostView& X, 
               HostView& Y,
               HostView& D,
               int blockIndex,
               int stride,
               Teuchos::ETransp mode,
               scalar_type alpha,
               scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
std::ostream& TriDiContainer<MatrixType, LocalScalarType, false>::print(std::ostream& os) const
{
  return os;
}

template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, false>::description() const
{
  return "";
}

template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, false>::
describe (Teuchos::FancyOStream& os,
          const Teuchos::EVerbosityLevel verbLevel) const {}

template<class MatrixType, class LocalScalarType>
void
TriDiContainer<MatrixType, LocalScalarType, false>::
extract () {}

template<class MatrixType, class LocalScalarType>
std::string TriDiContainer<MatrixType, LocalScalarType, false>::getName()
{
  return "";
}

#define IFPACK2_TRIDICONTAINER_INSTANT(S,LO,GO,N) \
  template class Ifpack2::TriDiContainer< Tpetra::RowMatrix<S, LO, GO, N>, S >;

} // namespace Ifpack2

#endif