/usr/include/trilinos/Ifpack2_Relaxation_def.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_RELAXATION_DEF_HPP
#define IFPACK2_RELAXATION_DEF_HPP
#include "Teuchos_StandardParameterEntryValidators.hpp"
#include "Teuchos_TimeMonitor.hpp"
#include "Tpetra_CrsMatrix.hpp"
#include "Tpetra_Experimental_BlockCrsMatrix.hpp"
#include "Ifpack2_Utilities.hpp"
#include "Ifpack2_Relaxation_decl.hpp"
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
# include "KokkosKernels_GaussSeidel.hpp"
#endif // HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
#ifdef HAVE_IFPACK2_DUMP_MTX_MATRIX
# include "MatrixMarket_Tpetra.hpp"
#endif
// mfh 28 Mar 2013: Uncomment out these three lines to compute
// statistics on diagonal entries in compute().
// #ifndef IFPACK2_RELAXATION_COMPUTE_DIAGONAL_STATS
// # define IFPACK2_RELAXATION_COMPUTE_DIAGONAL_STATS 1
// #endif // IFPACK2_RELAXATION_COMPUTE_DIAGONAL_STATS
namespace {
// Validate that a given int is nonnegative.
class NonnegativeIntValidator : public Teuchos::ParameterEntryValidator {
public:
// Constructor (does nothing).
NonnegativeIntValidator () {}
// ParameterEntryValidator wants this method.
Teuchos::ParameterEntryValidator::ValidStringsList validStringValues () const {
return Teuchos::null;
}
// Actually validate the parameter's value.
void
validate (const Teuchos::ParameterEntry& entry,
const std::string& paramName,
const std::string& sublistName) const
{
using std::endl;
Teuchos::any anyVal = entry.getAny (true);
const std::string entryName = entry.getAny (false).typeName ();
TEUCHOS_TEST_FOR_EXCEPTION(
anyVal.type () != typeid (int),
Teuchos::Exceptions::InvalidParameterType,
"Parameter \"" << paramName << "\" in sublist \"" << sublistName
<< "\" has the wrong type." << endl << "Parameter: " << paramName
<< endl << "Type specified: " << entryName << endl
<< "Type required: int" << endl);
const int val = Teuchos::any_cast<int> (anyVal);
TEUCHOS_TEST_FOR_EXCEPTION(
val < 0, Teuchos::Exceptions::InvalidParameterValue,
"Parameter \"" << paramName << "\" in sublist \"" << sublistName
<< "\" is negative." << endl << "Parameter: " << paramName
<< endl << "Value specified: " << val << endl
<< "Required range: [0, INT_MAX]" << endl);
}
// ParameterEntryValidator wants this method.
const std::string getXMLTypeName () const {
return "NonnegativeIntValidator";
}
// ParameterEntryValidator wants this method.
void
printDoc (const std::string& docString,
std::ostream &out) const
{
Teuchos::StrUtils::printLines (out, "# ", docString);
out << "#\tValidator Used: " << std::endl;
out << "#\t\tNonnegativeIntValidator" << std::endl;
}
};
// A way to get a small positive number (eps() for floating-point
// types, or 1 for integer types) when Teuchos::ScalarTraits doesn't
// define it (for example, for integer values).
template<class Scalar, const bool isOrdinal=Teuchos::ScalarTraits<Scalar>::isOrdinal>
class SmallTraits {
public:
// Return eps if Scalar is a floating-point type, else return 1.
static const Scalar eps ();
};
// Partial specialization for when Scalar is not a floating-point type.
template<class Scalar>
class SmallTraits<Scalar, true> {
public:
static const Scalar eps () {
return Teuchos::ScalarTraits<Scalar>::one ();
}
};
// Partial specialization for when Scalar is a floating-point type.
template<class Scalar>
class SmallTraits<Scalar, false> {
public:
static const Scalar eps () {
return Teuchos::ScalarTraits<Scalar>::eps ();
}
};
} // namespace (anonymous)
namespace Ifpack2 {
template<class MatrixType>
void Relaxation<MatrixType>::
setMatrix (const Teuchos::RCP<const row_matrix_type>& A)
{
if (A.getRawPtr () != A_.getRawPtr ()) { // it's a different matrix
Importer_ = Teuchos::null;
Diagonal_ = Teuchos::null; // ??? what if this comes from the user???
isInitialized_ = false;
IsComputed_ = false;
diagOffsets_ = Kokkos::View<size_t*, typename node_type::device_type> ();
savedDiagOffsets_ = false;
hasBlockCrsMatrix_ = false;
if (! A.is_null ()) {
IsParallel_ = (A->getRowMap ()->getComm ()->getSize () > 1);
}
A_ = A;
}
}
template<class MatrixType>
Relaxation<MatrixType>::
Relaxation (const Teuchos::RCP<const row_matrix_type>& A)
: A_ (A),
Time_ (Teuchos::rcp (new Teuchos::Time ("Ifpack2::Relaxation"))),
NumSweeps_ (1),
PrecType_ (Ifpack2::Details::JACOBI),
DampingFactor_ (STS::one ()),
IsParallel_ ((A.is_null () || A->getRowMap ().is_null () || A->getRowMap ()->getComm ().is_null ()) ?
false : // a reasonable default if there's no communicator
A->getRowMap ()->getComm ()->getSize () > 1),
ZeroStartingSolution_ (true),
DoBackwardGS_ (false),
DoL1Method_ (false),
L1Eta_ (Teuchos::as<magnitude_type> (1.5)),
MinDiagonalValue_ (STS::zero ()),
fixTinyDiagEntries_ (false),
checkDiagEntries_ (false),
isInitialized_ (false),
IsComputed_ (false),
NumInitialize_ (0),
NumCompute_ (0),
NumApply_ (0),
InitializeTime_ (0.0), // Times are double anyway, so no need for ScalarTraits.
ComputeTime_ (0.0),
ApplyTime_ (0.0),
ComputeFlops_ (0.0),
ApplyFlops_ (0.0),
globalMinMagDiagEntryMag_ (STM::zero ()),
globalMaxMagDiagEntryMag_ (STM::zero ()),
globalNumSmallDiagEntries_ (0),
globalNumZeroDiagEntries_ (0),
globalNumNegDiagEntries_ (0),
globalDiagNormDiff_(Teuchos::ScalarTraits<magnitude_type>::zero()),
savedDiagOffsets_ (false),
hasBlockCrsMatrix_ (false)
{
this->setObjectLabel ("Ifpack2::Relaxation");
}
//==========================================================================
template<class MatrixType>
Relaxation<MatrixType>::~Relaxation() {
}
template<class MatrixType>
Teuchos::RCP<const Teuchos::ParameterList>
Relaxation<MatrixType>::getValidParameters () const
{
using Teuchos::Array;
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcp_const_cast;
using Teuchos::rcp_implicit_cast;
using Teuchos::setStringToIntegralParameter;
typedef Teuchos::ParameterEntryValidator PEV;
if (validParams_.is_null ()) {
RCP<ParameterList> pl = parameterList ("Ifpack2::Relaxation");
// Set a validator that automatically converts from the valid
// string options to their enum values.
Array<std::string> precTypes (5);
precTypes[0] = "Jacobi";
precTypes[1] = "Gauss-Seidel";
precTypes[2] = "Symmetric Gauss-Seidel";
precTypes[3] = "MT Gauss-Seidel";
precTypes[4] = "MT Symmetric Gauss-Seidel";
Array<Details::RelaxationType> precTypeEnums (5);
precTypeEnums[0] = Details::JACOBI;
precTypeEnums[1] = Details::GS;
precTypeEnums[2] = Details::SGS;
precTypeEnums[3] = Details::MTGS;
precTypeEnums[4] = Details::MTSGS;
const std::string defaultPrecType ("Jacobi");
setStringToIntegralParameter<Details::RelaxationType> ("relaxation: type",
defaultPrecType, "Relaxation method", precTypes (), precTypeEnums (),
pl.getRawPtr ());
const int numSweeps = 1;
RCP<PEV> numSweepsValidator =
rcp_implicit_cast<PEV> (rcp (new NonnegativeIntValidator));
pl->set ("relaxation: sweeps", numSweeps, "Number of relaxation sweeps",
rcp_const_cast<const PEV> (numSweepsValidator));
const scalar_type dampingFactor = STS::one ();
pl->set ("relaxation: damping factor", dampingFactor);
const bool zeroStartingSolution = true;
pl->set ("relaxation: zero starting solution", zeroStartingSolution);
const bool doBackwardGS = false;
pl->set ("relaxation: backward mode", doBackwardGS);
const bool doL1Method = false;
pl->set ("relaxation: use l1", doL1Method);
const magnitude_type l1eta = (STM::one() + STM::one() + STM::one()) /
(STM::one() + STM::one()); // 1.5
pl->set ("relaxation: l1 eta", l1eta);
const scalar_type minDiagonalValue = STS::zero ();
pl->set ("relaxation: min diagonal value", minDiagonalValue);
const bool fixTinyDiagEntries = false;
pl->set ("relaxation: fix tiny diagonal entries", fixTinyDiagEntries);
const bool checkDiagEntries = false;
pl->set ("relaxation: check diagonal entries", checkDiagEntries);
Teuchos::ArrayRCP<local_ordinal_type> localSmoothingIndices = Teuchos::null;
pl->set("relaxation: local smoothing indices", localSmoothingIndices);
validParams_ = rcp_const_cast<const ParameterList> (pl);
}
return validParams_;
}
template<class MatrixType>
void Relaxation<MatrixType>::setParametersImpl (Teuchos::ParameterList& pl)
{
using Teuchos::getIntegralValue;
using Teuchos::ParameterList;
using Teuchos::RCP;
typedef scalar_type ST; // just to make code below shorter
pl.validateParametersAndSetDefaults (* getValidParameters ());
const Details::RelaxationType precType =
getIntegralValue<Details::RelaxationType> (pl, "relaxation: type");
const int numSweeps = pl.get<int> ("relaxation: sweeps");
const ST dampingFactor = pl.get<ST> ("relaxation: damping factor");
const bool zeroStartSol = pl.get<bool> ("relaxation: zero starting solution");
const bool doBackwardGS = pl.get<bool> ("relaxation: backward mode");
const bool doL1Method = pl.get<bool> ("relaxation: use l1");
const magnitude_type l1Eta = pl.get<magnitude_type> ("relaxation: l1 eta");
const ST minDiagonalValue = pl.get<ST> ("relaxation: min diagonal value");
const bool fixTinyDiagEntries = pl.get<bool> ("relaxation: fix tiny diagonal entries");
const bool checkDiagEntries = pl.get<bool> ("relaxation: check diagonal entries");
Teuchos::ArrayRCP<local_ordinal_type> localSmoothingIndices = pl.get<Teuchos::ArrayRCP<local_ordinal_type> >("relaxation: local smoothing indices");
// "Commit" the changes, now that we've validated everything.
PrecType_ = precType;
NumSweeps_ = numSweeps;
DampingFactor_ = dampingFactor;
ZeroStartingSolution_ = zeroStartSol;
DoBackwardGS_ = doBackwardGS;
DoL1Method_ = doL1Method;
L1Eta_ = l1Eta;
MinDiagonalValue_ = minDiagonalValue;
fixTinyDiagEntries_ = fixTinyDiagEntries;
checkDiagEntries_ = checkDiagEntries;
localSmoothingIndices_ = localSmoothingIndices;
}
template<class MatrixType>
void Relaxation<MatrixType>::setParameters (const Teuchos::ParameterList& pl)
{
// FIXME (aprokop 18 Oct 2013) Casting away const is bad here.
// but otherwise, we will get [unused] in pl
this->setParametersImpl(const_cast<Teuchos::ParameterList&>(pl));
}
template<class MatrixType>
Teuchos::RCP<const Teuchos::Comm<int> >
Relaxation<MatrixType>::getComm() const {
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::getComm: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix before calling this method.");
return A_->getRowMap ()->getComm ();
}
template<class MatrixType>
Teuchos::RCP<const typename Relaxation<MatrixType>::row_matrix_type>
Relaxation<MatrixType>::getMatrix () const {
return A_;
}
template<class MatrixType>
Teuchos::RCP<const Tpetra::Map<typename MatrixType::local_ordinal_type,
typename MatrixType::global_ordinal_type,
typename MatrixType::node_type> >
Relaxation<MatrixType>::getDomainMap () const {
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::getDomainMap: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix before calling this method.");
return A_->getDomainMap ();
}
template<class MatrixType>
Teuchos::RCP<const Tpetra::Map<typename MatrixType::local_ordinal_type,
typename MatrixType::global_ordinal_type,
typename MatrixType::node_type> >
Relaxation<MatrixType>::getRangeMap () const {
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::getRangeMap: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix before calling this method.");
return A_->getRangeMap ();
}
template<class MatrixType>
bool Relaxation<MatrixType>::hasTransposeApply () const {
return true;
}
template<class MatrixType>
int Relaxation<MatrixType>::getNumInitialize() const {
return(NumInitialize_);
}
template<class MatrixType>
int Relaxation<MatrixType>::getNumCompute() const {
return(NumCompute_);
}
template<class MatrixType>
int Relaxation<MatrixType>::getNumApply() const {
return(NumApply_);
}
template<class MatrixType>
double Relaxation<MatrixType>::getInitializeTime() const {
return(InitializeTime_);
}
template<class MatrixType>
double Relaxation<MatrixType>::getComputeTime() const {
return(ComputeTime_);
}
template<class MatrixType>
double Relaxation<MatrixType>::getApplyTime() const {
return(ApplyTime_);
}
template<class MatrixType>
double Relaxation<MatrixType>::getComputeFlops() const {
return(ComputeFlops_);
}
template<class MatrixType>
double Relaxation<MatrixType>::getApplyFlops() const {
return(ApplyFlops_);
}
template<class MatrixType>
void
Relaxation<MatrixType>::
apply (const Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& X,
Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& Y,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::as;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
typedef Tpetra::MultiVector<scalar_type, local_ordinal_type,
global_ordinal_type, node_type> MV;
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::apply: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix, then call compute(), before calling this method.");
TEUCHOS_TEST_FOR_EXCEPTION(
! isComputed (),
std::runtime_error,
"Ifpack2::Relaxation::apply: You must call compute() on this Ifpack2 "
"preconditioner instance before you may call apply(). You may call "
"isComputed() to find out if compute() has been called already.");
TEUCHOS_TEST_FOR_EXCEPTION(
X.getNumVectors() != Y.getNumVectors(),
std::runtime_error,
"Ifpack2::Relaxation::apply: X and Y have different numbers of columns. "
"X has " << X.getNumVectors() << " columns, but Y has "
<< Y.getNumVectors() << " columns.");
TEUCHOS_TEST_FOR_EXCEPTION(
beta != STS::zero (), std::logic_error,
"Ifpack2::Relaxation::apply: beta = " << beta << " != 0 case not "
"implemented.");
{
// Reset the timer each time, since Relaxation uses the same Time
// object to track times for different methods.
Teuchos::TimeMonitor timeMon (*Time_, true);
// Special case: alpha == 0.
if (alpha == STS::zero ()) {
// No floating-point operations, so no need to update a count.
Y.putScalar (STS::zero ());
}
else {
// If X and Y alias one another, then we need to create an
// auxiliary vector, Xcopy (a deep copy of X).
RCP<const MV> Xcopy;
// FIXME (mfh 12 Sep 2014) This test for aliasing is incomplete.
{
auto X_lcl_host = X.template getLocalView<Kokkos::HostSpace> ();
auto Y_lcl_host = Y.template getLocalView<Kokkos::HostSpace> ();
if (X_lcl_host.ptr_on_device () == Y_lcl_host.ptr_on_device ()) {
Xcopy = rcp (new MV (X, Teuchos::Copy));
} else {
Xcopy = rcpFromRef (X);
}
}
// Each of the following methods updates the flop count itself.
// All implementations handle zeroing out the starting solution
// (if necessary) themselves.
switch (PrecType_) {
case Ifpack2::Details::JACOBI:
ApplyInverseJacobi(*Xcopy,Y);
break;
case Ifpack2::Details::GS:
ApplyInverseGS(*Xcopy,Y);
break;
case Ifpack2::Details::SGS:
ApplyInverseSGS(*Xcopy,Y);
break;
case Ifpack2::Details::MTSGS:
ApplyInverseMTSGS_CrsMatrix(*Xcopy,Y);
break;
case Ifpack2::Details::MTGS:
ApplyInverseMTGS_CrsMatrix(*Xcopy,Y);
break;
default:
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,
"Ifpack2::Relaxation::apply: Invalid preconditioner type enum value "
<< PrecType_ << ". Please report this bug to the Ifpack2 developers.");
}
if (alpha != STS::one ()) {
Y.scale (alpha);
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numVectors = as<double> (Y.getNumVectors ());
ApplyFlops_ += numGlobalRows * numVectors;
}
}
}
ApplyTime_ += Time_->totalElapsedTime ();
++NumApply_;
}
template<class MatrixType>
void
Relaxation<MatrixType>::
applyMat (const Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& X,
Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& Y,
Teuchos::ETransp mode) const
{
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::applyMat: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix, then call compute(), before calling this method.");
TEUCHOS_TEST_FOR_EXCEPTION(
! isComputed (), std::runtime_error, "Ifpack2::Relaxation::applyMat: "
"isComputed() must be true before you may call applyMat(). "
"Please call compute() before calling this method.");
TEUCHOS_TEST_FOR_EXCEPTION(
X.getNumVectors () != Y.getNumVectors (), std::invalid_argument,
"Ifpack2::Relaxation::applyMat: X.getNumVectors() = " << X.getNumVectors ()
<< " != Y.getNumVectors() = " << Y.getNumVectors () << ".");
A_->apply (X, Y, mode);
}
template<class MatrixType>
void Relaxation<MatrixType>::initialize ()
{
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::initialize: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix before calling this method.");
Teuchos::TimeMonitor timeMon (*Time_, true);
if (A_.is_null ()) {
hasBlockCrsMatrix_ = false;
}
else { // A_ is not null
Teuchos::RCP<const block_crs_matrix_type> A_bcrs =
Teuchos::rcp_dynamic_cast<const block_crs_matrix_type> (A_);
if (A_bcrs.is_null ()) {
hasBlockCrsMatrix_ = false;
}
else { // A_ is a block_crs_matrix_type
hasBlockCrsMatrix_ = true;
}
}
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
//KokkosKernels GaussSiedel Initialization.
if (PrecType_ == Ifpack2::Details::MTGS || PrecType_ == Ifpack2::Details::MTSGS) {
const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
TEUCHOS_TEST_FOR_EXCEPTION(
crsMat == NULL, std::runtime_error, "Ifpack2::Relaxation::compute: "
"MT methods works for CRSMatrix Only.");
#ifdef HAVE_IFPACK2_DUMP_MTX_MATRIX
Tpetra::MatrixMarket::Writer<crs_matrix_type> crs_writer;
std::string file_name = "Ifpack2_MT_GS.mtx";
Teuchos::RCP<const crs_matrix_type> rcp_crs_mat = Teuchos::rcp_dynamic_cast<const crs_matrix_type> (A_);
crs_writer.writeSparseFile(file_name, rcp_crs_mat);
#endif
this->kh = Teuchos::rcp(new KernelHandle());
if (kh->get_gs_handle() == NULL){
kh->create_gs_handle();
}
kokkos_csr_matrix kcsr = crsMat->getLocalMatrix ();
bool is_symmetric = false;
if (PrecType_ == Ifpack2::Details::MTSGS){
is_symmetric = true;
}
KokkosKernels::Experimental::Graph::gauss_seidel_symbolic
<KernelHandle, lno_row_view_t, lno_nonzero_view_t>
(kh.getRawPtr(), A_->getNodeNumRows(),
A_->getNodeNumCols(),
kcsr.graph.row_map,
kcsr.graph.entries,
is_symmetric);
}
#endif
// Initialization for Relaxation is trivial, so we say it takes zero time.
InitializeTime_ += Time_->totalElapsedTime ();
++NumInitialize_;
isInitialized_ = true;
}
namespace Impl {
template <typename BlockDiagView>
struct InvertDiagBlocks {
typedef int value_type;
typedef typename BlockDiagView::size_type Size;
private:
typedef Kokkos::MemoryTraits<Kokkos::Unmanaged> Unmanaged;
template <typename View>
using UnmanagedView = Kokkos::View<typename View::data_type, typename View::array_layout,
typename View::device_type, Unmanaged>;
typedef typename BlockDiagView::non_const_value_type Scalar;
typedef typename BlockDiagView::device_type Device;
typedef Kokkos::View<Scalar**, Kokkos::LayoutRight, Device> RWrk;
typedef Kokkos::View<int**, Kokkos::LayoutRight, Device> IWrk;
UnmanagedView<BlockDiagView> block_diag_;
// TODO Use thread team and scratch memory space. In this first
// pass, provide workspace for each block.
RWrk rwrk_buf_;
UnmanagedView<RWrk> rwrk_;
IWrk iwrk_buf_;
UnmanagedView<IWrk> iwrk_;
public:
InvertDiagBlocks (BlockDiagView& block_diag)
: block_diag_(block_diag)
{
const auto blksz = block_diag.dimension_1();
Kokkos::resize(rwrk_buf_, block_diag_.dimension_0(), blksz);
rwrk_ = rwrk_buf_;
Kokkos::resize(iwrk_buf_, block_diag_.dimension_0(), blksz);
iwrk_ = iwrk_buf_;
}
KOKKOS_INLINE_FUNCTION
void operator() (const Size i, int& jinfo) const {
auto D_cur = Kokkos::subview(block_diag_, i, Kokkos::ALL(), Kokkos::ALL());
auto ipiv = Kokkos::subview(iwrk_, i, Kokkos::ALL());
auto work = Kokkos::subview(rwrk_, i, Kokkos::ALL());
int info = 0;
Tpetra::Experimental::GETF2(D_cur, ipiv, info);
if (info) {
++jinfo;
return;
}
Tpetra::Experimental::GETRI(D_cur, ipiv, work, info);
if (info) ++jinfo;
}
// Report the number of blocks with errors.
KOKKOS_INLINE_FUNCTION
void join (volatile value_type& dst, volatile value_type const& src) const { dst += src; }
};
}
template<class MatrixType>
void Relaxation<MatrixType>::computeBlockCrs ()
{
using Kokkos::ALL;
using Teuchos::Array;
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::Comm;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::REDUCE_MAX;
using Teuchos::REDUCE_MIN;
using Teuchos::REDUCE_SUM;
using Teuchos::rcp_dynamic_cast;
using Teuchos::reduceAll;
typedef local_ordinal_type LO;
typedef typename node_type::device_type device_type;
{
// Reset the timer each time, since Relaxation uses the same Time
// object to track times for different methods.
Teuchos::TimeMonitor timeMon (*Time_, true);
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::"
"computeBlockCrs: The input matrix A is null. Please call setMatrix() "
"with a nonnull input matrix, then call initialize(), before calling "
"this method.");
const block_crs_matrix_type* blockCrsA =
dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr ());
TEUCHOS_TEST_FOR_EXCEPTION(
blockCrsA == NULL, std::logic_error, "Ifpack2::Relaxation::"
"computeBlockCrs: A_ is not a BlockCrsMatrix, but it should be if we "
"got this far. Please report this bug to the Ifpack2 developers.");
const scalar_type one = STS::one ();
// Reset state.
IsComputed_ = false;
const LO lclNumMeshRows =
blockCrsA->getCrsGraph ().getNodeNumRows ();
const LO blockSize = blockCrsA->getBlockSize ();
if (! savedDiagOffsets_) {
blockDiag_ = block_diag_type (); // clear it before reallocating
blockDiag_ = block_diag_type ("Ifpack2::Relaxation::blockDiag_",
lclNumMeshRows, blockSize, blockSize);
if (Teuchos::as<LO>(diagOffsets_.dimension_0 () ) < lclNumMeshRows) {
// Clear diagOffsets_ first (by assigning an empty View to it)
// to save memory, before reallocating.
diagOffsets_ = Kokkos::View<size_t*, device_type> ();
diagOffsets_ = Kokkos::View<size_t*, device_type> ("offsets", lclNumMeshRows);
}
blockCrsA->getCrsGraph ().getLocalDiagOffsets (diagOffsets_);
TEUCHOS_TEST_FOR_EXCEPTION
(static_cast<size_t> (diagOffsets_.dimension_0 ()) !=
static_cast<size_t> (blockDiag_.dimension_0 ()),
std::logic_error, "diagOffsets_.dimension_0() = " <<
diagOffsets_.dimension_0 () << " != blockDiag_.dimension_0() = "
<< blockDiag_.dimension_0 () <<
". Please report this bug to the Ifpack2 developers.");
savedDiagOffsets_ = true;
}
blockCrsA->getLocalDiagCopy (blockDiag_, diagOffsets_);
// Use an unmanaged View in this method, so that when we take
// subviews of it (to get each diagonal block), we don't have to
// touch the reference count. Reference count updates are a
// thread scalability bottleneck and have a performance cost even
// without using threads.
unmanaged_block_diag_type blockDiag = blockDiag_;
if (DoL1Method_ && IsParallel_) {
const scalar_type two = one + one;
const size_t maxLength = A_->getNodeMaxNumRowEntries ();
Array<LO> indices (maxLength);
Array<scalar_type> values (maxLength * blockSize * blockSize);
size_t numEntries = 0;
for (LO i = 0; i < lclNumMeshRows; ++i) {
// FIXME (mfh 16 Dec 2015) Get views instead of copies.
blockCrsA->getLocalRowCopy (i, indices (), values (), numEntries);
auto diagBlock = Kokkos::subview (blockDiag, i, ALL (), ALL ());
for (LO subRow = 0; subRow < blockSize; ++subRow) {
magnitude_type diagonal_boost = STM::zero ();
for (size_t k = 0 ; k < numEntries ; ++k) {
if (indices[k] > lclNumMeshRows) {
const size_t offset = blockSize*blockSize*k + subRow*blockSize;
for (LO subCol = 0; subCol < blockSize; ++subCol) {
diagonal_boost += STS::magnitude (values[offset+subCol] / two);
}
}
}
if (STS::magnitude (diagBlock(subRow, subRow)) < L1Eta_ * diagonal_boost) {
diagBlock(subRow, subRow) += diagonal_boost;
}
}
}
}
int info = 0;
{
Impl::InvertDiagBlocks<unmanaged_block_diag_type> idb(blockDiag);
Kokkos::parallel_reduce(lclNumMeshRows, idb, info);
TEUCHOS_TEST_FOR_EXCEPTION
(info > 0, std::runtime_error, "GETF2 or GETRI failed on = " << info
<< " diagonal blocks.");
}
// In a debug build, do an extra test to make sure that all the
// factorizations were computed correctly.
#ifdef HAVE_IFPACK2_DEBUG
const int numResults = 2;
// Use "max = -min" trick to get min and max in a single all-reduce.
int lclResults[2], gblResults[2];
lclResults[0] = info;
lclResults[1] = -info;
gblResults[0] = 0;
gblResults[1] = 0;
reduceAll<int, int> (* (A_->getGraph ()->getComm ()), REDUCE_MIN,
numResults, lclResults, gblResults);
TEUCHOS_TEST_FOR_EXCEPTION
(gblResults[0] != 0 || gblResults[1] != 0, std::runtime_error,
"Ifpack2::Relaxation::compute: When processing the input "
"Tpetra::BlockCrsMatrix, one or more diagonal block LU factorizations "
"failed on one or more (MPI) processes.");
#endif // HAVE_IFPACK2_DEBUG
Importer_ = A_->getGraph ()->getImporter ();
} // end TimeMonitor scope
ComputeTime_ += Time_->totalElapsedTime ();
++NumCompute_;
IsComputed_ = true;
}
template<class MatrixType>
void Relaxation<MatrixType>::compute ()
{
using Teuchos::Array;
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::Comm;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::REDUCE_MAX;
using Teuchos::REDUCE_MIN;
using Teuchos::REDUCE_SUM;
using Teuchos::rcp_dynamic_cast;
using Teuchos::reduceAll;
typedef Tpetra::Vector<scalar_type, local_ordinal_type,
global_ordinal_type, node_type> vector_type;
typedef typename vector_type::device_type device_type;
const scalar_type zero = STS::zero ();
const scalar_type one = STS::one ();
// We don't count initialization in compute() time.
if (! isInitialized ()) {
initialize ();
}
if (hasBlockCrsMatrix_) {
computeBlockCrs ();
return;
}
{
// Reset the timer each time, since Relaxation uses the same Time
// object to track times for different methods.
Teuchos::TimeMonitor timeMon (*Time_, true);
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::compute: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix, then call initialize(), before calling this method.");
// Reset state.
IsComputed_ = false;
TEUCHOS_TEST_FOR_EXCEPTION(
NumSweeps_ < 0, std::logic_error,
"Ifpack2::Relaxation::compute: NumSweeps_ = " << NumSweeps_ << " < 0. "
"Please report this bug to the Ifpack2 developers.");
Diagonal_ = rcp (new vector_type (A_->getRowMap ()));
// Extract the diagonal entries. The CrsMatrix static graph
// version is faster for subsequent calls to compute(), since it
// caches the diagonal offsets.
//
// isStaticGraph() == true means that the matrix was created with
// a const graph. The only requirement is that the structure of
// the matrix never changes, so isStaticGraph() == true is a bit
// more conservative than we need. However, Tpetra doesn't (as of
// 05 Apr 2013) have a way to tell if the graph hasn't changed
// since the last time we used it.
{
// NOTE (mfh 07 Jul 2013): We must cast here to CrsMatrix
// instead of MatrixType, because isStaticGraph is a CrsMatrix
// method (not inherited from RowMatrix's interface). It's
// perfectly valid to do relaxation on a RowMatrix which is not
// a CrsMatrix.
const crs_matrix_type* crsMat =
dynamic_cast<const crs_matrix_type*> (A_.getRawPtr ());
if (crsMat == NULL || ! crsMat->isStaticGraph ()) {
A_->getLocalDiagCopy (*Diagonal_); // slow path
} else {
if (! savedDiagOffsets_) { // we haven't precomputed offsets
const size_t lclNumRows = A_->getRowMap ()->getNodeNumElements ();
if (diagOffsets_.dimension_0 () < lclNumRows) {
typedef typename node_type::device_type DT;
diagOffsets_ = Kokkos::View<size_t*, DT> (); // clear 1st to save mem
diagOffsets_ = Kokkos::View<size_t*, DT> ("offsets", lclNumRows);
}
crsMat->getCrsGraph ()->getLocalDiagOffsets (diagOffsets_);
savedDiagOffsets_ = true;
}
crsMat->getLocalDiagCopy (*Diagonal_, diagOffsets_);
#ifdef HAVE_IFPACK2_DEBUG
// Validate the fast-path diagonal against the slow-path diagonal.
vector_type D_copy (A_->getRowMap ());
A_->getLocalDiagCopy (D_copy);
D_copy.update (STS::one (), *Diagonal_, -STS::one ());
const magnitude_type err = D_copy.normInf ();
// The two diagonals should be exactly the same, so their
// difference should be exactly zero.
TEUCHOS_TEST_FOR_EXCEPTION(
err != STM::zero(), std::logic_error, "Ifpack2::Relaxation::compute: "
"\"fast-path\" diagonal computation failed. \\|D1 - D2\\|_inf = "
<< err << ".");
#endif // HAVE_IFPACK2_DEBUG
}
}
// If we're checking the computed inverse diagonal, then keep a
// copy of the original diagonal entries for later comparison.
RCP<vector_type> origDiag;
if (checkDiagEntries_) {
origDiag = rcp (new vector_type (A_->getRowMap ()));
Tpetra::deep_copy (*origDiag, *Diagonal_);
}
const size_t numMyRows = A_->getNodeNumRows ();
// We're about to read and write diagonal entries on the host.
Diagonal_->template sync<Kokkos::HostSpace> ();
Diagonal_->template modify<Kokkos::HostSpace> ();
auto diag_2d = Diagonal_->template getLocalView<Kokkos::HostSpace> ();
auto diag_1d = Kokkos::subview (diag_2d, Kokkos::ALL (), 0);
// FIXME (mfh 12 Jan 2016) temp fix for Kokkos::complex vs. std::complex.
scalar_type* const diag = reinterpret_cast<scalar_type*> (diag_1d.ptr_on_device ());
// Setup for L1 Methods.
// Here we add half the value of the off-processor entries in the row,
// but only if diagonal isn't sufficiently large.
//
// This follows from Equation (6.5) in: Baker, Falgout, Kolev and
// Yang. "Multigrid Smoothers for Ultraparallel Computing." SIAM
// J. Sci. Comput., Vol. 33, No. 5. (2011), pp. 2864-2887.
if (DoL1Method_ && IsParallel_) {
const scalar_type two = one + one;
const size_t maxLength = A_->getNodeMaxNumRowEntries ();
Array<local_ordinal_type> indices (maxLength);
Array<scalar_type> values (maxLength);
size_t numEntries;
for (size_t i = 0; i < numMyRows; ++i) {
A_->getLocalRowCopy (i, indices (), values (), numEntries);
magnitude_type diagonal_boost = STM::zero ();
for (size_t k = 0 ; k < numEntries ; ++k) {
if (static_cast<size_t> (indices[k]) > numMyRows) {
diagonal_boost += STS::magnitude (values[k] / two);
}
}
if (STS::magnitude (diag[i]) < L1Eta_ * diagonal_boost) {
diag[i] += diagonal_boost;
}
}
}
//
// Invert the diagonal entries of the matrix (not in place).
//
// Precompute some quantities for "fixing" zero or tiny diagonal
// entries. We'll only use them if this "fixing" is enabled.
//
// SmallTraits covers for the lack of eps() in
// Teuchos::ScalarTraits when its template parameter is not a
// floating-point type. (Ifpack2 sometimes gets instantiated for
// integer Scalar types.)
const scalar_type oneOverMinDiagVal = (MinDiagonalValue_ == zero) ?
one / SmallTraits<scalar_type>::eps () :
one / MinDiagonalValue_;
// It's helpful not to have to recompute this magnitude each time.
const magnitude_type minDiagValMag = STS::magnitude (MinDiagonalValue_);
if (checkDiagEntries_) {
//
// Check diagonal elements, replace zero elements with the minimum
// diagonal value, and store their inverses. Count the number of
// "small" and zero diagonal entries while we're at it.
//
size_t numSmallDiagEntries = 0; // "small" includes zero
size_t numZeroDiagEntries = 0; // # zero diagonal entries
size_t numNegDiagEntries = 0; // # negative (real parts of) diagonal entries
// As we go, keep track of the diagonal entries with the least and
// greatest magnitude. We could use the trick of starting the min
// with +Inf and the max with -Inf, but that doesn't work if
// scalar_type is a built-in integer type. Thus, we have to start
// by reading the first diagonal entry redundantly.
// scalar_type minMagDiagEntry = zero;
// scalar_type maxMagDiagEntry = zero;
magnitude_type minMagDiagEntryMag = STM::zero ();
magnitude_type maxMagDiagEntryMag = STM::zero ();
if (numMyRows > 0) {
const scalar_type d_0 = diag[0];
const magnitude_type d_0_mag = STS::magnitude (d_0);
// minMagDiagEntry = d_0;
// maxMagDiagEntry = d_0;
minMagDiagEntryMag = d_0_mag;
maxMagDiagEntryMag = d_0_mag;
}
// Go through all the diagonal entries. Compute counts of
// small-magnitude, zero, and negative-real-part entries. Invert
// the diagonal entries that aren't too small. For those that are
// too small in magnitude, replace them with 1/MinDiagonalValue_
// (or 1/eps if MinDiagonalValue_ happens to be zero).
for (size_t i = 0 ; i < numMyRows; ++i) {
const scalar_type d_i = diag[i];
const magnitude_type d_i_mag = STS::magnitude (d_i);
const magnitude_type d_i_real = STS::real (d_i);
// We can't compare complex numbers, but we can compare their
// real parts.
if (d_i_real < STM::zero ()) {
++numNegDiagEntries;
}
if (d_i_mag < minMagDiagEntryMag) {
// minMagDiagEntry = d_i;
minMagDiagEntryMag = d_i_mag;
}
if (d_i_mag > maxMagDiagEntryMag) {
// maxMagDiagEntry = d_i;
maxMagDiagEntryMag = d_i_mag;
}
if (fixTinyDiagEntries_) {
// <= not <, in case minDiagValMag is zero.
if (d_i_mag <= minDiagValMag) {
++numSmallDiagEntries;
if (d_i_mag == STM::zero ()) {
++numZeroDiagEntries;
}
diag[i] = oneOverMinDiagVal;
} else {
diag[i] = one / d_i;
}
}
else { // Don't fix zero or tiny diagonal entries.
// <= not <, in case minDiagValMag is zero.
if (d_i_mag <= minDiagValMag) {
++numSmallDiagEntries;
if (d_i_mag == STM::zero ()) {
++numZeroDiagEntries;
}
}
diag[i] = one / d_i;
}
}
// Count floating-point operations of computing the inverse diagonal.
//
// FIXME (mfh 30 Mar 2013) Shouldn't counts be global, not local?
if (STS::isComplex) { // magnitude: at least 3 flops per diagonal entry
ComputeFlops_ += 4.0 * numMyRows;
} else {
ComputeFlops_ += numMyRows;
}
// Collect global data about the diagonal entries. Only do this
// (which involves O(1) all-reduces) if the user asked us to do
// the extra work.
//
// FIXME (mfh 28 Mar 2013) This is wrong if some processes have
// zero rows. Fixing this requires one of two options:
//
// 1. Use a custom reduction operation that ignores processes
// with zero diagonal entries.
// 2. Split the communicator, compute all-reduces using the
// subcommunicator over processes that have a nonzero number
// of diagonal entries, and then broadcast from one of those
// processes (if there is one) to the processes in the other
// subcommunicator.
const Comm<int>& comm = * (A_->getRowMap ()->getComm ());
// Compute global min and max magnitude of entries.
Array<magnitude_type> localVals (2);
localVals[0] = minMagDiagEntryMag;
// (- (min (- x))) is the same as (max x).
localVals[1] = -maxMagDiagEntryMag;
Array<magnitude_type> globalVals (2);
reduceAll<int, magnitude_type> (comm, REDUCE_MIN, 2,
localVals.getRawPtr (),
globalVals.getRawPtr ());
globalMinMagDiagEntryMag_ = globalVals[0];
globalMaxMagDiagEntryMag_ = -globalVals[1];
Array<size_t> localCounts (3);
localCounts[0] = numSmallDiagEntries;
localCounts[1] = numZeroDiagEntries;
localCounts[2] = numNegDiagEntries;
Array<size_t> globalCounts (3);
reduceAll<int, size_t> (comm, REDUCE_SUM, 3,
localCounts.getRawPtr (),
globalCounts.getRawPtr ());
globalNumSmallDiagEntries_ = globalCounts[0];
globalNumZeroDiagEntries_ = globalCounts[1];
globalNumNegDiagEntries_ = globalCounts[2];
// Forestall "set but not used" compiler warnings.
// (void) minMagDiagEntry;
// (void) maxMagDiagEntry;
// Compute and save the difference between the computed inverse
// diagonal, and the original diagonal's inverse.
//
// NOTE (mfh 11 Jan 2016) We need to sync Diagonal_ back from
// host to device for the update kernel below, and we don't need
// to modify it or sync it back again here.
vector_type diff (A_->getRowMap ());
diff.reciprocal (*origDiag);
Diagonal_->template sync<device_type> ();
diff.update (-one, *Diagonal_, one);
globalDiagNormDiff_ = diff.norm2 ();
}
else { // don't check diagonal elements
if (fixTinyDiagEntries_) {
// Go through all the diagonal entries. Invert those that
// aren't too small in magnitude. For those that are too
// small in magnitude, replace them with oneOverMinDiagVal.
for (size_t i = 0 ; i < numMyRows; ++i) {
const scalar_type d_i = diag[i];
const magnitude_type d_i_mag = STS::magnitude (d_i);
// <= not <, in case minDiagValMag is zero.
if (d_i_mag <= minDiagValMag) {
diag[i] = oneOverMinDiagVal;
} else {
diag[i] = one / d_i;
}
}
}
else { // don't fix tiny or zero diagonal entries
for (size_t i = 0 ; i < numMyRows; ++i) {
diag[i] = one / diag[i];
}
}
if (STS::isComplex) { // magnitude: at least 3 flops per diagonal entry
ComputeFlops_ += 4.0 * numMyRows;
} else {
ComputeFlops_ += numMyRows;
}
}
if (IsParallel_ && (PrecType_ == Ifpack2::Details::GS ||
PrecType_ == Ifpack2::Details::SGS)) {
// mfh 21 Mar 2013: The Import object may be null, but in that
// case, the domain and column Maps are the same and we don't
// need to Import anyway.
Importer_ = A_->getGraph ()->getImporter ();
Diagonal_->template sync<device_type> ();
}
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
//KokkosKernels GaussSiedel Initialization.
if (PrecType_ == Ifpack2::Details::MTGS || PrecType_ == Ifpack2::Details::MTSGS) {
const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
TEUCHOS_TEST_FOR_EXCEPTION(
crsMat == NULL, std::runtime_error, "Ifpack2::Relaxation::compute: "
"MT methods works for CRSMatrix Only.");
kokkos_csr_matrix kcsr = crsMat->getLocalMatrix ();
bool is_symmetric = false;
if (PrecType_ == Ifpack2::Details::MTSGS){
is_symmetric = true;
}
KokkosKernels::Experimental::Graph::gauss_seidel_numeric
<KernelHandle, lno_row_view_t, lno_nonzero_view_t, scalar_nonzero_view_t>
(kh.getRawPtr(), A_->getNodeNumRows(), A_->getNodeNumCols(), kcsr.graph.row_map,
kcsr.graph.entries, kcsr.values, is_symmetric);
}
#endif
} // end TimeMonitor scope
ComputeTime_ += Time_->totalElapsedTime ();
++NumCompute_;
IsComputed_ = true;
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseJacobi (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
using Teuchos::as;
typedef Tpetra::MultiVector<scalar_type, local_ordinal_type,
global_ordinal_type, node_type> MV;
if (hasBlockCrsMatrix_) {
ApplyInverseJacobi_BlockCrsMatrix (X, Y);
return;
}
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numVectors = as<double> (X.getNumVectors ());
if (ZeroStartingSolution_) {
// For the first Jacobi sweep, if we are allowed to assume that
// the initial guess is zero, then Jacobi is just diagonal
// scaling. (A_ij * x_j = 0 for i != j, since x_j = 0.)
// Compute it as Y(i,j) = DampingFactor_ * X(i,j) * D(i).
Y.elementWiseMultiply (DampingFactor_, *Diagonal_, X, STS::zero ());
// Count (global) floating-point operations. Ifpack2 represents
// this as a floating-point number rather than an integer, so that
// overflow (for a very large number of calls, or a very large
// problem) is approximate instead of catastrophic.
double flopUpdate = 0.0;
if (DampingFactor_ == STS::one ()) {
// Y(i,j) = X(i,j) * D(i): one multiply for each entry of Y.
flopUpdate = numGlobalRows * numVectors;
} else {
// Y(i,j) = DampingFactor_ * X(i,j) * D(i):
// Two multiplies per entry of Y.
flopUpdate = 2.0 * numGlobalRows * numVectors;
}
ApplyFlops_ += flopUpdate;
if (NumSweeps_ == 1) {
return;
}
}
// If we were allowed to assume that the starting guess was zero,
// then we have already done the first sweep above.
const int startSweep = ZeroStartingSolution_ ? 1 : 0;
// We don't need to initialize the result MV, since the sparse
// mat-vec will clobber its contents anyway.
MV A_times_Y (Y.getMap (), as<size_t>(numVectors), false);
for (int j = startSweep; j < NumSweeps_; ++j) {
// Each iteration: Y = Y + \omega D^{-1} (X - A*Y)
applyMat (Y, A_times_Y);
A_times_Y.update (STS::one (), X, -STS::one ());
Y.elementWiseMultiply (DampingFactor_, *Diagonal_, A_times_Y, STS::one ());
}
// For each column of output, for each pass over the matrix:
//
// - One + and one * for each matrix entry
// - One / and one + for each row of the matrix
// - If the damping factor is not one: one * for each row of the
// matrix. (It's not fair to count this if the damping factor is
// one, since the implementation could skip it. Whether it does
// or not is the implementation's choice.)
// Floating-point operations due to the damping factor, per matrix
// row, per direction, per columm of output.
const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
const double dampingFlops = (DampingFactor_ == STS::one ()) ? 0.0 : 1.0;
ApplyFlops_ += as<double> (NumSweeps_ - startSweep) * numVectors *
(2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseJacobi_BlockCrsMatrix (const Tpetra::MultiVector<scalar_type,
local_ordinal_type,
global_ordinal_type,
node_type>& X,
Tpetra::MultiVector<scalar_type,
local_ordinal_type,
global_ordinal_type,
node_type>& Y) const
{
typedef Tpetra::Experimental::BlockMultiVector<scalar_type,
local_ordinal_type, global_ordinal_type, node_type> BMV;
const block_crs_matrix_type* blockMatConst =
dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr ());
TEUCHOS_TEST_FOR_EXCEPTION
(blockMatConst == NULL, std::logic_error, "This method should never be "
"called if the matrix A_ is not a BlockCrsMatrix. Please report this "
"bug to the Ifpack2 developers.");
// mfh 23 Jan 2016: Unfortunately, the const cast is necessary.
// This is because applyBlock() is nonconst (more accurate), while
// apply() is const (required by Tpetra::Operator interface, but a
// lie, because it possibly allocates temporary buffers).
block_crs_matrix_type* blockMat =
const_cast<block_crs_matrix_type*> (blockMatConst);
auto meshRowMap = blockMat->getRowMap ();
auto meshColMap = blockMat->getColMap ();
const local_ordinal_type blockSize = blockMat->getBlockSize ();
BMV X_blk (X, *meshColMap, blockSize);
BMV Y_blk (Y, *meshRowMap, blockSize);
if (ZeroStartingSolution_) {
// For the first sweep, if we are allowed to assume that the
// initial guess is zero, then block Jacobi is just block diagonal
// scaling. (A_ij * x_j = 0 for i != j, since x_j = 0.)
Y_blk.blockWiseMultiply (DampingFactor_, blockDiag_, X_blk);
if (NumSweeps_ == 1) {
return;
}
}
auto pointRowMap = Y.getMap ();
const size_t numVecs = X.getNumVectors ();
// We don't need to initialize the result MV, since the sparse
// mat-vec will clobber its contents anyway.
BMV A_times_Y (*meshRowMap, *pointRowMap, blockSize, numVecs);
// If we were allowed to assume that the starting guess was zero,
// then we have already done the first sweep above.
const int startSweep = ZeroStartingSolution_ ? 1 : 0;
for (int j = startSweep; j < NumSweeps_; ++j) {
blockMat->applyBlock (Y_blk, A_times_Y);
// Y := Y + \omega D^{-1} (X - A*Y). Use A_times_Y as scratch.
Y_blk.blockJacobiUpdate (DampingFactor_, blockDiag_,
X_blk, A_times_Y, STS::one ());
}
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
typedef Relaxation<MatrixType> this_type;
// The CrsMatrix version is faster, because it can access the sparse
// matrix data directly, rather than by copying out each row's data
// in turn. Thus, we check whether the RowMatrix is really a
// CrsMatrix.
//
// FIXME (mfh 07 Jul 2013) See note on crs_matrix_type typedef
// declaration in Ifpack2_Relaxation_decl.hpp header file. The code
// will still be correct if the cast fails, but it will use an
// unoptimized kernel.
const block_crs_matrix_type* blockCrsMat =
dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr ());
const crs_matrix_type* crsMat =
dynamic_cast<const crs_matrix_type*> (A_.getRawPtr ());
if (blockCrsMat != NULL) {
const_cast<this_type*> (this)->ApplyInverseGS_BlockCrsMatrix (*blockCrsMat, X, Y);
} else if (crsMat != NULL) {
ApplyInverseGS_CrsMatrix (*crsMat, X, Y);
} else {
ApplyInverseGS_RowMatrix (X, Y);
}
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS_RowMatrix (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
using Teuchos::Array;
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
typedef Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> MV;
// Tpetra's GS implementation for CrsMatrix handles zeroing out the
// starting multivector itself. The generic RowMatrix version here
// does not, so we have to zero out Y here.
if (ZeroStartingSolution_) {
Y.putScalar (STS::zero ());
}
const size_t NumVectors = X.getNumVectors ();
const size_t maxLength = A_->getNodeMaxNumRowEntries ();
Array<local_ordinal_type> Indices (maxLength);
Array<scalar_type> Values (maxLength);
// Local smoothing stuff
const size_t numMyRows = A_->getNodeNumRows();
const local_ordinal_type* rowInd = 0;
size_t numActive = numMyRows;
bool do_local = ! localSmoothingIndices_.is_null ();
if (do_local) {
rowInd = localSmoothingIndices_.getRawPtr ();
numActive = localSmoothingIndices_.size ();
}
RCP<MV> Y2;
if (IsParallel_) {
if (Importer_.is_null ()) { // domain and column Maps are the same.
// We will copy Y into Y2 below, so no need to fill with zeros here.
Y2 = rcp (new MV (Y.getMap (), NumVectors, false));
} else {
// FIXME (mfh 21 Mar 2013) We probably don't need to fill with
// zeros here, since we are doing an Import into Y2 below
// anyway. However, it doesn't hurt correctness.
Y2 = rcp (new MV (Importer_->getTargetMap (), NumVectors));
}
}
else {
Y2 = rcpFromRef (Y);
}
// Diagonal
ArrayRCP<const scalar_type> d_rcp = Diagonal_->get1dView ();
ArrayView<const scalar_type> d_ptr = d_rcp();
// Constant stride check
bool constant_stride = X.isConstantStride() && Y2->isConstantStride();
if (constant_stride) {
// extract 1D RCPs
size_t x_stride = X.getStride();
size_t y2_stride = Y2->getStride();
ArrayRCP<scalar_type> y2_rcp = Y2->get1dViewNonConst();
ArrayRCP<const scalar_type> x_rcp = X.get1dView();
ArrayView<scalar_type> y2_ptr = y2_rcp();
ArrayView<const scalar_type> x_ptr = x_rcp();
Array<scalar_type> dtemp(NumVectors,STS::zero());
for (int j = 0; j < NumSweeps_; ++j) {
// data exchange is here, once per sweep
if (IsParallel_) {
if (Importer_.is_null ()) {
*Y2 = Y; // just copy, since domain and column Maps are the same
} else {
Y2->doImport (Y, *Importer_, Tpetra::INSERT);
}
}
if (! DoBackwardGS_) { // Forward sweep
for (size_t ii = 0; ii < numActive; ++ii) {
local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);
size_t NumEntries;
A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
dtemp.assign(NumVectors,STS::zero());
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
for (size_t m = 0; m < NumVectors; ++m) {
dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
}
}
for (size_t m = 0; m < NumVectors; ++m) {
y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
}
}
}
else { // Backward sweep
// ptrdiff_t is the same size as size_t, but is signed. Being
// signed is important so that i >= 0 is not trivially true.
for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);
size_t NumEntries;
A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
dtemp.assign (NumVectors, STS::zero ());
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
for (size_t m = 0; m < NumVectors; ++m) {
dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
}
}
for (size_t m = 0; m < NumVectors; ++m) {
y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
}
}
}
// FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
if (IsParallel_) {
Tpetra::deep_copy (Y, *Y2);
}
}
}
else {
// extract 2D RCPS
ArrayRCP<ArrayRCP<scalar_type> > y2_ptr = Y2->get2dViewNonConst ();
ArrayRCP<ArrayRCP<const scalar_type> > x_ptr = X.get2dView ();
for (int j = 0; j < NumSweeps_; ++j) {
// data exchange is here, once per sweep
if (IsParallel_) {
if (Importer_.is_null ()) {
*Y2 = Y; // just copy, since domain and column Maps are the same
} else {
Y2->doImport (Y, *Importer_, Tpetra::INSERT);
}
}
if (! DoBackwardGS_) { // Forward sweep
for (size_t ii = 0; ii < numActive; ++ii) {
local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);
size_t NumEntries;
A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
for (size_t m = 0; m < NumVectors; ++m) {
scalar_type dtemp = STS::zero ();
ArrayView<const scalar_type> x_local = (x_ptr())[m]();
ArrayView<scalar_type> y2_local = (y2_ptr())[m]();
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
dtemp += Values[k] * y2_local[col];
}
y2_local[i] += DampingFactor_ * d_ptr[i] * (x_local[i] - dtemp);
}
}
}
else { // Backward sweep
// ptrdiff_t is the same size as size_t, but is signed. Being
// signed is important so that i >= 0 is not trivially true.
for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);
size_t NumEntries;
A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
for (size_t m = 0; m < NumVectors; ++m) {
scalar_type dtemp = STS::zero ();
ArrayView<const scalar_type> x_local = (x_ptr())[m]();
ArrayView<scalar_type> y2_local = (y2_ptr())[m]();
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
dtemp += Values[k] * y2_local[col];
}
y2_local[i] += DampingFactor_ * d_ptr[i] * (x_local[i] - dtemp);
}
}
}
// FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
if (IsParallel_) {
Tpetra::deep_copy (Y, *Y2);
}
}
}
// See flop count discussion in implementation of ApplyInverseGS_CrsMatrix().
const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
const double numVectors = as<double> (X.getNumVectors ());
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
(2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS_CrsMatrix (const crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
using Teuchos::as;
const Tpetra::ESweepDirection direction =
DoBackwardGS_ ? Tpetra::Backward : Tpetra::Forward;
if (localSmoothingIndices_.is_null ()) {
A.gaussSeidelCopy (Y, X, *Diagonal_, DampingFactor_, direction,
NumSweeps_, ZeroStartingSolution_);
}
else {
A.reorderedGaussSeidelCopy (Y, X, *Diagonal_, localSmoothingIndices_ (),
DampingFactor_, direction,
NumSweeps_, ZeroStartingSolution_);
}
// For each column of output, for each sweep over the matrix:
//
// - One + and one * for each matrix entry
// - One / and one + for each row of the matrix
// - If the damping factor is not one: one * for each row of the
// matrix. (It's not fair to count this if the damping factor is
// one, since the implementation could skip it. Whether it does
// or not is the implementation's choice.)
// Floating-point operations due to the damping factor, per matrix
// row, per direction, per columm of output.
const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
const double numVectors = as<double> (X.getNumVectors ());
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
ApplyFlops_ += NumSweeps_ * numVectors *
(2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS_BlockCrsMatrix (const block_crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y)
{
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
typedef Tpetra::Experimental::BlockMultiVector<scalar_type,
local_ordinal_type, global_ordinal_type, node_type> BMV;
typedef Tpetra::MultiVector<scalar_type,
local_ordinal_type, global_ordinal_type, node_type> MV;
//FIXME: (tcf) 8/21/2014 -- may be problematic for multiple right hand sides
//
// NOTE (mfh 12 Sep 2014) I don't think it should be a problem for
// multiple right-hand sides, unless the input or output MultiVector
// does not have constant stride. We should check for that case
// here, in case it doesn't work in localGaussSeidel (which is
// entirely possible).
BMV yBlock (Y, * (A.getGraph ()->getDomainMap ()), A.getBlockSize ());
const BMV xBlock (X, * (A.getColMap ()), A.getBlockSize ());
bool performImport = false;
RCP<BMV> yBlockCol;
if (Importer_.is_null ()) {
yBlockCol = rcpFromRef (yBlock);
}
else {
if (yBlockColumnPointMap_.is_null () ||
yBlockColumnPointMap_->getNumVectors () != yBlock.getNumVectors () ||
yBlockColumnPointMap_->getBlockSize () != yBlock.getBlockSize ()) {
yBlockColumnPointMap_ =
rcp (new BMV (* (A.getColMap ()), A.getBlockSize (),
static_cast<local_ordinal_type> (yBlock.getNumVectors ())));
}
yBlockCol = yBlockColumnPointMap_;
performImport = true;
}
if (ZeroStartingSolution_) {
yBlockCol->putScalar (STS::zero ());
}
else if (performImport) {
yBlockCol->doImport (yBlock, *Importer_, Tpetra::INSERT);
}
const Tpetra::ESweepDirection direction =
DoBackwardGS_ ? Tpetra::Backward : Tpetra::Forward;
for (int sweep = 0; sweep < NumSweeps_; ++sweep) {
if (performImport && sweep > 0) {
yBlockCol->doImport(yBlock, *Importer_, Tpetra::INSERT);
}
A.localGaussSeidel (xBlock, *yBlockCol, blockDiag_,
DampingFactor_, direction);
if (performImport) {
RCP<const MV> yBlockColPointDomain =
yBlockCol->getMultiVectorView ().offsetView (A.getDomainMap (), 0);
Tpetra::deep_copy (Y, *yBlockColPointDomain);
}
}
}
template<class MatrixType>
void Relaxation<MatrixType>::MTGaussSeidel (
const crs_matrix_type* crsMat,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& B,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& D,
const scalar_type& dampingFactor,
const Tpetra::ESweepDirection direction,
const int numSweeps,
const bool zeroInitialGuess) const
{
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
using Teuchos::null;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
using Teuchos::rcp_const_cast;
typedef scalar_type Scalar;
typedef local_ordinal_type LocalOrdinal;
typedef global_ordinal_type GlobalOrdinal;
typedef node_type Node;
//typedef Scalar ST;
const char prefix[] = "Ifpack2::Relaxation::(reordered)MTGaussSeidel: ";
const Scalar ZERO = Teuchos::ScalarTraits<Scalar>::zero ();
TEUCHOS_TEST_FOR_EXCEPTION(
! crsMat->isFillComplete (), std::runtime_error,
prefix << "The matrix is not fill complete.");
TEUCHOS_TEST_FOR_EXCEPTION(
numSweeps < 0, std::invalid_argument,
prefix << "The number of sweeps must be nonnegative, "
"but you provided numSweeps = " << numSweeps << " < 0.");
if (numSweeps == 0) {
return;
}
typedef typename Tpetra::MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node> MV;
typedef typename crs_matrix_type::import_type import_type;
typedef typename crs_matrix_type::export_type export_type;
typedef typename crs_matrix_type::map_type map_type;
RCP<const import_type> importer = crsMat->getGraph ()->getImporter ();
RCP<const export_type> exporter = crsMat->getGraph ()->getExporter ();
TEUCHOS_TEST_FOR_EXCEPTION(
! exporter.is_null (), std::runtime_error,
"This method's implementation currently requires that the matrix's row, "
"domain, and range Maps be the same. This cannot be the case, because "
"the matrix has a nontrivial Export object.");
RCP<const map_type> domainMap = crsMat->getDomainMap ();
RCP<const map_type> rangeMap = crsMat->getRangeMap ();
RCP<const map_type> rowMap = crsMat->getGraph ()->getRowMap ();
RCP<const map_type> colMap = crsMat->getGraph ()->getColMap ();
#ifdef HAVE_IFPACK2_DEBUG
{
// The relation 'isSameAs' is transitive. It's also a
// collective, so we don't have to do a "shared" test for
// exception (i.e., a global reduction on the test value).
TEUCHOS_TEST_FOR_EXCEPTION(
! X.getMap ()->isSameAs (*domainMap), std::runtime_error,
"Ifpack2::Relaxation::MTGaussSeidel requires that the input "
"multivector X be in the domain Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION(
! B.getMap ()->isSameAs (*rangeMap), std::runtime_error,
"Ifpack2::Relaxation::MTGaussSeidel requires that the input "
"B be in the range Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION(
! D.getMap ()->isSameAs (*rowMap), std::runtime_error,
"Ifpack2::Relaxation::MTGaussSeidel requires that the input "
"D be in the row Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION(
! rowMap->isSameAs (*rangeMap), std::runtime_error,
"Ifpack2::Relaxation::MTGaussSeidel requires that the row Map and the "
"range Map be the same (in the sense of Tpetra::Map::isSameAs).");
TEUCHOS_TEST_FOR_EXCEPTION(
! domainMap->isSameAs (*rangeMap), std::runtime_error,
"Ifpack2::Relaxation::MTGaussSeidel requires that the domain Map and "
"the range Map of the matrix be the same.");
}
#else
// Forestall any compiler warnings for unused variables.
(void) rangeMap;
(void) rowMap;
#endif // HAVE_IFPACK2_DEBUG
// Fetch a (possibly cached) temporary column Map multivector
// X_colMap, and a domain Map view X_domainMap of it. Both have
// constant stride by construction. We know that the domain Map
// must include the column Map, because our Gauss-Seidel kernel
// requires that the row Map, domain Map, and range Map are all
// the same, and that each process owns all of its own diagonal
// entries of the matrix.
RCP<MV> X_colMap;
RCP<MV> X_domainMap;
bool copyBackOutput = false;
if (importer.is_null ()) {
if (X.isConstantStride ()) {
X_colMap = rcpFromRef (X);
X_domainMap = rcpFromRef (X);
// Column Map and domain Map are the same, so there are no
// remote entries. Thus, if we are not setting the initial
// guess to zero, we don't have to worry about setting remote
// entries to zero, even though we are not doing an Import in
// this case.
if (zeroInitialGuess) {
X_colMap->putScalar (ZERO);
}
// No need to copy back to X at end.
}
else {
// We must copy X into a constant stride multivector.
// Just use the cached column Map multivector for that.
// force=true means fill with zeros, so no need to fill
// remote entries (not in domain Map) with zeros.
//X_colMap = crsMat->getColumnMapMultiVector (X, true);
X_colMap = rcp (new MV (colMap, X.getNumVectors ()));
// X_domainMap is always a domain Map view of the column Map
// multivector. In this case, the domain and column Maps are
// the same, so X_domainMap _is_ X_colMap.
X_domainMap = X_colMap;
if (! zeroInitialGuess) { // Don't copy if zero initial guess
try {
deep_copy (*X_domainMap , X); // Copy X into constant stride MV
} catch (std::exception& e) {
std::ostringstream os;
os << "Ifpack2::Relaxation::MTGaussSeidel: "
"deep_copy(*X_domainMap, X) threw an exception: "
<< e.what () << ".";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::runtime_error, e.what ());
}
}
copyBackOutput = true; // Don't forget to copy back at end.
/*
TPETRA_EFFICIENCY_WARNING(
! X.isConstantStride (),
std::runtime_error,
"MTGaussSeidel: The current implementation of the Gauss-Seidel "
"kernel requires that X and B both have constant stride. Since X "
"does not have constant stride, we had to make a copy. This is a "
"limitation of the current implementation and not your fault, but we "
"still report it as an efficiency warning for your information.");
*/
}
}
else { // Column Map and domain Map are _not_ the same.
//X_colMap = crsMat->getColumnMapMultiVector (X);
X_colMap = rcp (new MV (colMap, X.getNumVectors ()));
X_domainMap = X_colMap->offsetViewNonConst (domainMap, 0);
#ifdef HAVE_IFPACK2_DEBUG
auto X_colMap_host_view = X_colMap->template getLocalView<Kokkos::HostSpace> ();
auto X_domainMap_host_view = X_domainMap->template getLocalView<Kokkos::HostSpace> ();
if (X_colMap->getLocalLength () != 0 && X_domainMap->getLocalLength ()) {
TEUCHOS_TEST_FOR_EXCEPTION(
X_colMap_host_view.ptr_on_device () != X_domainMap_host_view.ptr_on_device (),
std::logic_error, "Ifpack2::Relaxation::MTGaussSeidel: "
"Pointer to start of column Map view of X is not equal to pointer to "
"start of (domain Map view of) X. This may mean that "
"Tpetra::MultiVector::offsetViewNonConst is broken. "
"Please report this bug to the Tpetra developers.");
}
TEUCHOS_TEST_FOR_EXCEPTION(
X_colMap_host_view.dimension_0 () < X_domainMap_host_view.dimension_0 () ||
X_colMap->getLocalLength () < X_domainMap->getLocalLength (),
std::logic_error, "Ifpack2::Relaxation::MTGaussSeidel: "
"X_colMap has fewer local rows than X_domainMap. "
"X_colMap_host_view.dimension_0() = " << X_colMap_host_view.dimension_0 ()
<< ", X_domainMap_host_view.dimension_0() = "
<< X_domainMap_host_view.dimension_0 ()
<< ", X_colMap->getLocalLength() = " << X_colMap->getLocalLength ()
<< ", and X_domainMap->getLocalLength() = "
<< X_domainMap->getLocalLength ()
<< ". This means that Tpetra::MultiVector::offsetViewNonConst "
"is broken. Please report this bug to the Tpetra developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
X_colMap->getNumVectors () != X_domainMap->getNumVectors (),
std::logic_error, "Ifpack2::Relaxation::MTGaussSeidel: "
"X_colMap has a different number of columns than X_domainMap. "
"X_colMap->getNumVectors() = " << X_colMap->getNumVectors ()
<< " != X_domainMap->getNumVectors() = "
<< X_domainMap->getNumVectors ()
<< ". This means that Tpetra::MultiVector::offsetViewNonConst "
"is broken. Please report this bug to the Tpetra developers.");
#endif // HAVE_IFPACK2_DEBUG
if (zeroInitialGuess) {
// No need for an Import, since we're filling with zeros.
X_colMap->putScalar (ZERO);
} else {
// We could just copy X into X_domainMap. However, that
// wastes a copy, because the Import also does a copy (plus
// communication). Since the typical use case for
// Gauss-Seidel is a small number of sweeps (2 is typical), we
// don't want to waste that copy. Thus, we do the Import
// here, and skip the first Import in the first sweep.
// Importing directly from X effects the copy into X_domainMap
// (which is a view of X_colMap).
X_colMap->doImport (X, *importer, Tpetra::CombineMode::INSERT);
}
copyBackOutput = true; // Don't forget to copy back at end.
} // if column and domain Maps are (not) the same
// The Gauss-Seidel / SOR kernel expects multivectors of constant
// stride. X_colMap is by construction, but B might not be. If
// it's not, we have to make a copy.
RCP<const MV> B_in;
if (B.isConstantStride ()) {
B_in = rcpFromRef (B);
}
else {
// Range Map and row Map are the same in this case, so we can
// use the cached row Map multivector to store a constant stride
// copy of B.
//RCP<MV> B_in_nonconst = crsMat->getRowMapMultiVector (B, true);
RCP<MV> B_in_nonconst = rcp (new MV (rowMap, B.getNumVectors()));
try {
deep_copy (*B_in_nonconst, B);
} catch (std::exception& e) {
std::ostringstream os;
os << "Ifpack2::Relaxation::MTGaussSeidel: "
"deep_copy(*B_in_nonconst, B) threw an exception: "
<< e.what () << ".";
TEUCHOS_TEST_FOR_EXCEPTION(true, std::runtime_error, e.what ());
}
B_in = rcp_const_cast<const MV> (B_in_nonconst);
/*
TPETRA_EFFICIENCY_WARNING(
! B.isConstantStride (),
std::runtime_error,
"MTGaussSeidel: The current implementation requires that B have "
"constant stride. Since B does not have constant stride, we had to "
"copy it into a separate constant-stride multivector. This is a "
"limitation of the current implementation and not your fault, but we "
"still report it as an efficiency warning for your information.");
*/
}
kokkos_csr_matrix kcsr = crsMat->getLocalMatrix ();
const size_t NumVectors = X.getNumVectors ();
bool update_y_vector = true;
//false as it was done up already, and we dont want to zero it in each sweep.
bool zero_x_vector = false;
for (int sweep = 0; sweep < numSweeps; ++sweep) {
if (! importer.is_null () && sweep > 0) {
// We already did the first Import for the zeroth sweep above,
// if it was necessary.
X_colMap->doImport (*X_domainMap, *importer, Tpetra::CombineMode::INSERT);
}
//if (rowIndices.is_null ()) {
/*
std::cout << "X_colMap->getNumVectors:" << X_colMap->getNumVectors()
<<" X_colMap->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ()->dimension_0():"
<< X_colMap->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ().dimension_0()
<<" X_colMap->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ()->dimension_1():"
<< X_colMap->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ().dimension_1()
<< " B_in->getNumVectors:" << B_in->getNumVectors()
<<" B_in->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ()->dimension_0():"
<< B_in->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ().dimension_0()
<<" B_in->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ()->dimension_1():"
<< B_in->template getLocalView<Kokkos::CudaUVMSpace::memory_space> ().dimension_1()
<< std::endl;
KokkosKernels::Experimental::Util::print_1Dview(entries);
std::cout << std::endl;
KokkosKernels::Experimental::Util::print_1Dview(vals);
std::cout << std::endl;
KokkosKernels::Experimental::Util::print_1Dview(Kokkos::subview(X_colMap->template getLocalView<Kokkos::CudaUVMSpace::memory_space> (), Kokkos::ALL (), 0));
std::cout << std::endl;
KokkosKernels::Experimental::Util::print_1Dview(Kokkos::subview(B_in->template getLocalView<Kokkos::CudaUVMSpace::memory_space> (), Kokkos::ALL (), 0));
std::cout << std::endl;
*/
//typedef typename MV::dual_view_type dual_view_type;
//typedef typename dual_view_type::t_dev device_view_type;
//device_view_type KernelB = Kokkos::subview(B_in->template getLocalView<Kokkos::CudaUVMSpace::memory_space> (), 0, Kokkos::ALL ());
//std::cout << " 5" << std::endl;
//scalar_nonzero_view_t KernelXcolMap = Kokkos::subview(X_colMap->template getLocalView<Kokkos::CudaUVMSpace::memory_space> (), 0, Kokkos::ALL ());
//std::cout << " 6" << std::endl;
/*
crsMat->template localGaussSeidel<ST, ST> (*B_in, *X_colMap, D,
dampingFactor,
KokkosClassic::Forward);
// mfh 18 Mar 2013: Aztec's implementation of "symmetric
// Gauss-Seidel" does _not_ do an Import between the forward
// and backward sweeps. This makes symmetric Gauss-Seidel a
// symmetric preconditioner if the matrix A is symmetric. We
// imitate Aztec's behavior here.
crsMat->template localGaussSeidel<ST, ST> (*B_in, *X_colMap, D,
dampingFactor,
KokkosClassic::Backward);
*/
for (size_t indVec = 0; indVec < NumVectors; ++indVec){
if (direction == Tpetra::Symmetric) {
KokkosKernels::Experimental::Graph::symmetric_gauss_seidel_apply
(kh.getRawPtr(), A_->getNodeNumRows(), A_->getNodeNumCols(),
kcsr.graph.row_map, kcsr.graph.entries, kcsr.values,
Kokkos::subview(X_colMap->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
Kokkos::subview(B_in->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
zero_x_vector, update_y_vector);
}
else if (direction == Tpetra::Forward) {
KokkosKernels::Experimental::Graph::forward_sweep_gauss_seidel_apply
(kh.getRawPtr(), A_->getNodeNumRows(), A_->getNodeNumCols(),
kcsr.graph.row_map,kcsr.graph.entries, kcsr.values,
Kokkos::subview(X_colMap->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec ),
Kokkos::subview(B_in->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
zero_x_vector, update_y_vector);
}
else if (direction == Tpetra::Backward) {
KokkosKernels::Experimental::Graph::backward_sweep_gauss_seidel_apply
(kh.getRawPtr(), A_->getNodeNumRows(), A_->getNodeNumCols(),
kcsr.graph.row_map,kcsr.graph.entries, kcsr.values,
Kokkos::subview(X_colMap->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec ),
Kokkos::subview(B_in->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
zero_x_vector, update_y_vector);
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::invalid_argument,
prefix << "The 'direction' enum does not have any of its valid "
"values: Forward, Backward, or Symmetric.");
}
}
if (NumVectors > 1){
update_y_vector = true;
}
else {
update_y_vector = false;
}
/*
std::cout << "after" << std::endl;
KokkosKernels::Experimental::Util::print_1Dview(Kokkos::subview(X_colMap->template getLocalView<Kokkos::CudaUVMSpace::memory_space> (), Kokkos::ALL (), 0));
std::cout << std::endl;
KokkosKernels::Experimental::Util::print_1Dview(Kokkos::subview(B_in->template getLocalView<Kokkos::CudaUVMSpace::memory_space> (), Kokkos::ALL (), 0));
std::cout << std::endl;
*/
/*
else {
crsMat->template reorderedLocalGaussSeidel<ST, ST> (*B_in, *X_colMap,
D, rowIndices,
dampingFactor,
KokkosClassic::Forward);
crsMat->template reorderedLocalGaussSeidel<ST, ST> (*B_in, *X_colMap,
D, rowIndices,
dampingFactor,
KokkosClassic::Backward);
}
*/
//}
}
if (copyBackOutput) {
try {
deep_copy (X , *X_domainMap); // Copy result back into X.
} catch (std::exception& e) {
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::runtime_error, prefix << "deep_copy(X, *X_domainMap) "
"threw an exception: " << e.what ());
}
}
#endif
}
template<class MatrixType>
void Relaxation<MatrixType>::ApplyInverseMTSGS_CrsMatrix (
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& B,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X) const {
const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
TEUCHOS_TEST_FOR_EXCEPTION(
crsMat == NULL, std::runtime_error, "Ifpack2::Relaxation::compute: "
"MT methods works for CRSMatrix Only.");
using Teuchos::as;
const Tpetra::ESweepDirection direction = Tpetra::Symmetric;
Teuchos::ArrayView<local_ordinal_type> rowIndices;
if (!localSmoothingIndices_.is_null ()) {
std::cerr << "MT GaussSeidel ignores the given order" << std::endl;
}
this->MTGaussSeidel (
crsMat,
X, B,
*Diagonal_,
DampingFactor_,
direction, NumSweeps_,
ZeroStartingSolution_);
const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
const double numVectors = as<double> (X.getNumVectors ());
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
(2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}
template<class MatrixType>
void Relaxation<MatrixType>::ApplyInverseMTGS_CrsMatrix (
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& B,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X) const {
const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
TEUCHOS_TEST_FOR_EXCEPTION(
crsMat == NULL, std::runtime_error, "Ifpack2::Relaxation::compute: "
"MT methods works for CRSMatrix Only.");
using Teuchos::as;
const Tpetra::ESweepDirection direction =
DoBackwardGS_ ? Tpetra::Backward : Tpetra::Forward;
Teuchos::ArrayView<local_ordinal_type> rowIndices;
if (!localSmoothingIndices_.is_null ()) {
std::cerr << "MT GaussSeidel ignores the given order" << std::endl;
}
this->MTGaussSeidel (
crsMat,
X, B,
*Diagonal_,
DampingFactor_,
direction, NumSweeps_,
ZeroStartingSolution_);
const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
const double numVectors = as<double> (X.getNumVectors ());
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
ApplyFlops_ += NumSweeps_ * numVectors *
(2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
typedef Relaxation<MatrixType> this_type;
// The CrsMatrix version is faster, because it can access the sparse
// matrix data directly, rather than by copying out each row's data
// in turn. Thus, we check whether the RowMatrix is really a
// CrsMatrix.
//
// FIXME (mfh 07 Jul 2013) See note on crs_matrix_type typedef
// declaration in Ifpack2_Relaxation_decl.hpp header file. The code
// will still be correct if the cast fails, but it will use an
// unoptimized kernel.
const block_crs_matrix_type* blockCrsMat = dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr());
const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
if (blockCrsMat != NULL) {
const_cast<this_type*> (this)->ApplyInverseSGS_BlockCrsMatrix(*blockCrsMat, X, Y);
}
else if (crsMat != NULL) {
ApplyInverseSGS_CrsMatrix (*crsMat, X, Y);
} else {
ApplyInverseSGS_RowMatrix (X, Y);
}
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS_RowMatrix (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
using Teuchos::Array;
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
typedef Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> MV;
// Tpetra's GS implementation for CrsMatrix handles zeroing out the
// starting multivector itself. The generic RowMatrix version here
// does not, so we have to zero out Y here.
if (ZeroStartingSolution_) {
Y.putScalar (STS::zero ());
}
const size_t NumVectors = X.getNumVectors ();
const size_t maxLength = A_->getNodeMaxNumRowEntries ();
Array<local_ordinal_type> Indices (maxLength);
Array<scalar_type> Values (maxLength);
// Local smoothing stuff
const size_t numMyRows = A_->getNodeNumRows();
const local_ordinal_type * rowInd = 0;
size_t numActive = numMyRows;
bool do_local = localSmoothingIndices_.is_null();
if(do_local) {
rowInd = localSmoothingIndices_.getRawPtr();
numActive = localSmoothingIndices_.size();
}
RCP<MV> Y2;
if (IsParallel_) {
if (Importer_.is_null ()) { // domain and column Maps are the same.
// We will copy Y into Y2 below, so no need to fill with zeros here.
Y2 = rcp (new MV (Y.getMap (), NumVectors, false));
} else {
// FIXME (mfh 21 Mar 2013) We probably don't need to fill with
// zeros here, since we are doing an Import into Y2 below
// anyway. However, it doesn't hurt correctness.
Y2 = rcp (new MV (Importer_->getTargetMap (), NumVectors));
}
}
else {
Y2 = rcpFromRef (Y);
}
// Diagonal
ArrayRCP<const scalar_type> d_rcp = Diagonal_->get1dView();
ArrayView<const scalar_type> d_ptr = d_rcp();
// Constant stride check
bool constant_stride = X.isConstantStride() && Y2->isConstantStride();
if(constant_stride) {
// extract 1D RCPs
size_t x_stride = X.getStride();
size_t y2_stride = Y2->getStride();
ArrayRCP<scalar_type> y2_rcp = Y2->get1dViewNonConst();
ArrayRCP<const scalar_type> x_rcp = X.get1dView();
ArrayView<scalar_type> y2_ptr = y2_rcp();
ArrayView<const scalar_type> x_ptr = x_rcp();
Array<scalar_type> dtemp(NumVectors,STS::zero());
for (int iter = 0; iter < NumSweeps_; ++iter) {
// only one data exchange per sweep
if (IsParallel_) {
if (Importer_.is_null ()) {
// just copy, since domain and column Maps are the same
Tpetra::deep_copy (*Y2, Y);
} else {
Y2->doImport (Y, *Importer_, Tpetra::INSERT);
}
}
for (int j = 0; j < NumSweeps_; j++) {
// data exchange is here, once per sweep
if (IsParallel_) {
if (Importer_.is_null ()) {
// just copy, since domain and column Maps are the same
Tpetra::deep_copy (*Y2, Y);
} else {
Y2->doImport (Y, *Importer_, Tpetra::INSERT);
}
}
for (size_t ii = 0; ii < numActive; ++ii) {
local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
size_t NumEntries;
A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
dtemp.assign(NumVectors,STS::zero());
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
for (size_t m = 0; m < NumVectors; ++m) {
dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
}
}
for (size_t m = 0; m < NumVectors; ++m) {
y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
}
}
// ptrdiff_t is the same size as size_t, but is signed. Being
// signed is important so that i >= 0 is not trivially true.
for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
size_t NumEntries;
A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
dtemp.assign(NumVectors,STS::zero());
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
for (size_t m = 0; m < NumVectors; ++m) {
dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
}
}
for (size_t m = 0; m < NumVectors; ++m) {
y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
}
}
}
// FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
if (IsParallel_) {
Tpetra::deep_copy (Y, *Y2);
}
}
}
else {
// extract 2D RCPs
ArrayRCP<ArrayRCP<scalar_type> > y2_ptr = Y2->get2dViewNonConst ();
ArrayRCP<ArrayRCP<const scalar_type> > x_ptr = X.get2dView ();
for (int iter = 0; iter < NumSweeps_; ++iter) {
// only one data exchange per sweep
if (IsParallel_) {
if (Importer_.is_null ()) {
// just copy, since domain and column Maps are the same
Tpetra::deep_copy (*Y2, Y);
} else {
Y2->doImport (Y, *Importer_, Tpetra::INSERT);
}
}
for (size_t ii = 0; ii < numActive; ++ii) {
local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
const scalar_type diag = d_ptr[i];
size_t NumEntries;
A_->getLocalRowCopy (as<local_ordinal_type> (i), Indices (), Values (), NumEntries);
for (size_t m = 0; m < NumVectors; ++m) {
scalar_type dtemp = STS::zero ();
ArrayView<const scalar_type> x_local = (x_ptr())[m]();
ArrayView<scalar_type> y2_local = (y2_ptr())[m]();
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
dtemp += Values[k] * y2_local[col];
}
y2_local[i] += DampingFactor_ * (x_local[i] - dtemp) * diag;
}
}
// ptrdiff_t is the same size as size_t, but is signed. Being
// signed is important so that i >= 0 is not trivially true.
for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
const scalar_type diag = d_ptr[i];
size_t NumEntries;
A_->getLocalRowCopy (as<local_ordinal_type> (i), Indices (), Values (), NumEntries);
for (size_t m = 0; m < NumVectors; ++m) {
scalar_type dtemp = STS::zero ();
ArrayView<const scalar_type> x_local = (x_ptr())[m]();
ArrayView<scalar_type> y2_local = (y2_ptr())[m]();
for (size_t k = 0; k < NumEntries; ++k) {
const local_ordinal_type col = Indices[k];
dtemp += Values[k] * y2_local[col];
}
y2_local[i] += DampingFactor_ * (x_local[i] - dtemp) * diag;
}
}
// FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
if (IsParallel_) {
Tpetra::deep_copy (Y, *Y2);
}
}
}
// See flop count discussion in implementation of ApplyInverseSGS_CrsMatrix().
const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
const double numVectors = as<double> (X.getNumVectors ());
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
(2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS_CrsMatrix (const crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
using Teuchos::as;
const Tpetra::ESweepDirection direction = Tpetra::Symmetric;
if (localSmoothingIndices_.is_null ()) {
A.gaussSeidelCopy (Y, X, *Diagonal_, DampingFactor_, direction,
NumSweeps_, ZeroStartingSolution_);
}
else {
A.reorderedGaussSeidelCopy (Y, X, *Diagonal_, localSmoothingIndices_ (),
DampingFactor_, direction,
NumSweeps_, ZeroStartingSolution_);
}
// For each column of output, for each sweep over the matrix:
//
// - One + and one * for each matrix entry
// - One / and one + for each row of the matrix
// - If the damping factor is not one: one * for each row of the
// matrix. (It's not fair to count this if the damping factor is
// one, since the implementation could skip it. Whether it does
// or not is the implementation's choice.)
//
// Each sweep of symmetric Gauss-Seidel / SOR counts as two sweeps,
// one forward and one backward.
// Floating-point operations due to the damping factor, per matrix
// row, per direction, per columm of output.
const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
const double numVectors = as<double> (X.getNumVectors ());
const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
(2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}
template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS_BlockCrsMatrix (const block_crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y)
{
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
typedef Tpetra::Experimental::BlockMultiVector<scalar_type,
local_ordinal_type, global_ordinal_type, node_type> BMV;
typedef Tpetra::MultiVector<scalar_type,
local_ordinal_type, global_ordinal_type, node_type> MV;
//FIXME: (tcf) 8/21/2014 -- may be problematic for multiple right hand sides
//
// NOTE (mfh 12 Sep 2014) I don't think it should be a problem for
// multiple right-hand sides, unless the input or output MultiVector
// does not have constant stride. We should check for that case
// here, in case it doesn't work in localGaussSeidel (which is
// entirely possible).
BMV yBlock (Y, * (A.getGraph ()->getDomainMap ()), A.getBlockSize ());
const BMV xBlock (X, * (A.getColMap ()), A.getBlockSize ());
bool performImport = false;
RCP<BMV> yBlockCol;
if (Importer_.is_null ()) {
yBlockCol = Teuchos::rcpFromRef (yBlock);
}
else {
if (yBlockColumnPointMap_.is_null () ||
yBlockColumnPointMap_->getNumVectors () != yBlock.getNumVectors () ||
yBlockColumnPointMap_->getBlockSize () != yBlock.getBlockSize ()) {
yBlockColumnPointMap_ =
rcp (new BMV (* (A.getColMap ()), A.getBlockSize (),
static_cast<local_ordinal_type> (yBlock.getNumVectors ())));
}
yBlockCol = yBlockColumnPointMap_;
performImport = true;
}
if (ZeroStartingSolution_) {
yBlockCol->putScalar (STS::zero ());
}
else if (performImport) {
yBlockCol->doImport (yBlock, *Importer_, Tpetra::INSERT);
}
// FIXME (mfh 12 Sep 2014) Shouldn't this come from the user's parameter?
const Tpetra::ESweepDirection direction = Tpetra::Symmetric;
for (int sweep = 0; sweep < NumSweeps_; ++sweep) {
if (performImport && sweep > 0) {
yBlockCol->doImport (yBlock, *Importer_, Tpetra::INSERT);
}
A.localGaussSeidel (xBlock, *yBlockCol, blockDiag_,
DampingFactor_, direction);
if (performImport) {
RCP<const MV> yBlockColPointDomain =
yBlockCol->getMultiVectorView ().offsetView (A.getDomainMap (), 0);
MV yBlockView = yBlock.getMultiVectorView ();
Tpetra::deep_copy (yBlockView, *yBlockColPointDomain);
}
}
}
template<class MatrixType>
std::string Relaxation<MatrixType>::description () const
{
std::ostringstream os;
// Output is a valid YAML dictionary in flow style. If you don't
// like everything on a single line, you should call describe()
// instead.
os << "\"Ifpack2::Relaxation\": {";
os << "Initialized: " << (isInitialized () ? "true" : "false") << ", "
<< "Computed: " << (isComputed () ? "true" : "false") << ", ";
// It's useful to print this instance's relaxation method (Jacobi,
// Gauss-Seidel, or symmetric Gauss-Seidel). If you want more info
// than that, call describe() instead.
os << "Type: ";
if (PrecType_ == Ifpack2::Details::JACOBI) {
os << "Jacobi";
} else if (PrecType_ == Ifpack2::Details::GS) {
os << "Gauss-Seidel";
} else if (PrecType_ == Ifpack2::Details::SGS) {
os << "Symmetric Gauss-Seidel";
} else if (PrecType_ == Ifpack2::Details::MTGS) {
os << "MT Gauss-Seidel";
} else if (PrecType_ == Ifpack2::Details::MTSGS) {
os << "MT Symmetric Gauss-Seidel";
}
else {
os << "INVALID";
}
os << ", " << "sweeps: " << NumSweeps_ << ", "
<< "damping factor: " << DampingFactor_ << ", ";
if (DoL1Method_) {
os << "use l1: " << DoL1Method_ << ", "
<< "l1 eta: " << L1Eta_ << ", ";
}
if (A_.is_null ()) {
os << "Matrix: null";
}
else {
os << "Global matrix dimensions: ["
<< A_->getGlobalNumRows () << ", " << A_->getGlobalNumCols () << "]"
<< ", Global nnz: " << A_->getGlobalNumEntries();
}
os << "}";
return os.str ();
}
template<class MatrixType>
void
Relaxation<MatrixType>::
describe (Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel) const
{
using Teuchos::OSTab;
using Teuchos::TypeNameTraits;
using Teuchos::VERB_DEFAULT;
using Teuchos::VERB_NONE;
using Teuchos::VERB_LOW;
using Teuchos::VERB_MEDIUM;
using Teuchos::VERB_HIGH;
using Teuchos::VERB_EXTREME;
using std::endl;
const Teuchos::EVerbosityLevel vl =
(verbLevel == VERB_DEFAULT) ? VERB_LOW : verbLevel;
const int myRank = this->getComm ()->getRank ();
// none: print nothing
// low: print O(1) info from Proc 0
// medium:
// high:
// extreme:
if (vl != VERB_NONE && myRank == 0) {
// Describable interface asks each implementation to start with a tab.
OSTab tab1 (out);
// Output is valid YAML; hence the quotes, to protect the colons.
out << "\"Ifpack2::Relaxation\":" << endl;
OSTab tab2 (out);
out << "MatrixType: \"" << TypeNameTraits<MatrixType>::name () << "\""
<< endl;
if (this->getObjectLabel () != "") {
out << "Label: " << this->getObjectLabel () << endl;
}
out << "Initialized: " << (isInitialized () ? "true" : "false") << endl
<< "Computed: " << (isComputed () ? "true" : "false") << endl
<< "Parameters: " << endl;
{
OSTab tab3 (out);
out << "\"relaxation: type\": ";
if (PrecType_ == Ifpack2::Details::JACOBI) {
out << "Jacobi";
} else if (PrecType_ == Ifpack2::Details::GS) {
out << "Gauss-Seidel";
} else if (PrecType_ == Ifpack2::Details::SGS) {
out << "Symmetric Gauss-Seidel";
} else if (PrecType_ == Ifpack2::Details::MTGS) {
out << "MT Gauss-Seidel";
} else if (PrecType_ == Ifpack2::Details::MTSGS) {
out << "MT Symmetric Gauss-Seidel";
} else {
out << "INVALID";
}
// We quote these parameter names because they contain colons.
// YAML uses the colon to distinguish key from value.
out << endl
<< "\"relaxation: sweeps\": " << NumSweeps_ << endl
<< "\"relaxation: damping factor\": " << DampingFactor_ << endl
<< "\"relaxation: min diagonal value\": " << MinDiagonalValue_ << endl
<< "\"relaxation: zero starting solution\": " << ZeroStartingSolution_ << endl
<< "\"relaxation: backward mode\": " << DoBackwardGS_ << endl
<< "\"relaxation: use l1\": " << DoL1Method_ << endl
<< "\"relaxation: l1 eta\": " << L1Eta_ << endl;
}
out << "Computed quantities:" << endl;
{
OSTab tab3 (out);
out << "Global number of rows: " << A_->getGlobalNumRows () << endl
<< "Global number of columns: " << A_->getGlobalNumCols () << endl;
}
if (checkDiagEntries_ && isComputed ()) {
out << "Properties of input diagonal entries:" << endl;
{
OSTab tab3 (out);
out << "Magnitude of minimum-magnitude diagonal entry: "
<< globalMinMagDiagEntryMag_ << endl
<< "Magnitude of maximum-magnitude diagonal entry: "
<< globalMaxMagDiagEntryMag_ << endl
<< "Number of diagonal entries with small magnitude: "
<< globalNumSmallDiagEntries_ << endl
<< "Number of zero diagonal entries: "
<< globalNumZeroDiagEntries_ << endl
<< "Number of diagonal entries with negative real part: "
<< globalNumNegDiagEntries_ << endl
<< "Abs 2-norm diff between computed and actual inverse "
<< "diagonal: " << globalDiagNormDiff_ << endl;
}
}
if (isComputed ()) {
out << "Saved diagonal offsets: "
<< (savedDiagOffsets_ ? "true" : "false") << endl;
}
out << "Call counts and total times (in seconds): " << endl;
{
OSTab tab3 (out);
out << "initialize: " << endl;
{
OSTab tab4 (out);
out << "Call count: " << NumInitialize_ << endl;
out << "Total time: " << InitializeTime_ << endl;
}
out << "compute: " << endl;
{
OSTab tab4 (out);
out << "Call count: " << NumCompute_ << endl;
out << "Total time: " << ComputeTime_ << endl;
}
out << "apply: " << endl;
{
OSTab tab4 (out);
out << "Call count: " << NumApply_ << endl;
out << "Total time: " << ApplyTime_ << endl;
}
}
}
}
} // namespace Ifpack2
#define IFPACK2_RELAXATION_INSTANT(S,LO,GO,N) \
template class Ifpack2::Relaxation< Tpetra::RowMatrix<S, LO, GO, N> >;
#endif // IFPACK2_RELAXATION_DEF_HPP
|