/usr/include/trilinos/Ifpack2_Relaxation_decl.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_RELAXATION_DECL_HPP
#define IFPACK2_RELAXATION_DECL_HPP
#include "Ifpack2_Preconditioner.hpp"
#include "Ifpack2_Details_CanChangeMatrix.hpp"
#include "Ifpack2_Parameters.hpp"
#include "Tpetra_Vector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Tpetra_CrsMatrix_decl.hpp" // Don't need the definition here
#include "Tpetra_Experimental_BlockCrsMatrix_decl.hpp"
#include <type_traits>
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
#include <KokkosKernels_Handle.hpp>
#endif
namespace Teuchos {
// forward declarations
class ParameterList;
class Time;
} // namespace Teuchos
namespace Ifpack2 {
/** \class Relaxation
\brief Relaxation preconditioners for Tpetra::RowMatrix and Tpetra::CrsMatrix sparse matrices.
\author Michael A. Heroux (Sandia)
\tparam MatrixType A specialization of Tpetra::RowMatrix.
\section Ifpack_Relaxation_Summary Summary
This class implements several different relaxation preconditioners for
Tpetra::RowMatrix or its subclass Tpetra::CrsMatrix. Relaxation is
derived from Preconditioner, which is itself derived from
Tpetra::Operator. Therefore this object may be used as a
preconditioner for Belos linear solvers, and for any linear solver
that treats preconditioners as instances of Tpetra::Operator.
This class implements the following relaxation methods:
- Jacobi
- Gauss-Seidel
- Symmetric Gauss-Seidel
All methods allow you to set an optional damping parameter. The
"Gauss-Seidel" methods technically only perform Gauss-Seidel within an
MPI process, but Jacobi between processes. To compensate, these
methods include an "L1" option, which can improve convergence by
weighting contributions near process boundaries differently. For more
details, please refer to the following publication:
A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang.
"Multigrid Smoothers for Ultraparallel Computing."
<i>SIAM J. Sci. Comput.</i>, Vol. 33, No. 5. (2011),
pp. 2864-2887.
\section Ifpack_Relaxation_Performance Performance
Jacobi will always use your matrix's native sparse matrix-vector
multiply kernel. This should give good performance, since we have
spent a lot of effort tuning Tpetra's kernels. Depending on the Node
type of your Tpetra matrix, it may also exploit threads for additional
parallelism within each MPI process. In contrast, Gauss-Seidel and
symmetric Gauss-Seidel are intrinsically sequential methods within an
MPI process. This prevents us from exposing more parallelism via
threads. The difference should become more apparent as your code
moves away from a "one MPI process per core" model, to a "one MPI
process per socket or node" model, assuming that you are using a
thread-parallel Node type.
Relaxation works with any Tpetra::RowMatrix input. If your
Tpetra::RowMatrix happens to be a Tpetra::CrsMatrix, the Gauss-Seidel
and symmetric Gauss-Seidel relaxations may be able to exploit this for
better performance. You don't have to do anything to figure this out
(we test via \c dynamic_cast).
\section Ifpack_Relaxation_Create Creating a Relaxation preconditioner
The following code snippet shows how to create a Relaxation
preconditioner.
\code
#include "Ifpack2_Relaxation.hpp"
...
using Teuchos::ParameterList;
using Teuchos::RCP;
typedef double ST;
typedef int LO;
typedef int GO;
typedef Tpetra::CrsMatrix<ST, LO, GO> crs_matrix_type;
typedef Ifpack2::Preconditioner<ST, LO, GO> precond_type;
...
// Create the sparse matrix A somehow. It must be fill complete
// before you may create an Ifpack2 preconditioner from it.
RCP<crs_matrix_type> A = ...;
// Create the relaxation. You could also do this using
// Ifpack2::Factory (the preconditioner factory) if you like.
precond_type prec (A);
// Make the list of relaxation parameters.
Teuchos::ParameterList params;
// Do symmetric SOR / Gauss-Seidel.
params.set ("relaxation: type", "Symmetric Gauss-Seidel");
// Two sweeps (of symmetric SOR / Gauss-Seidel) per apply() call.
params.set ("relaxation: sweeps", 2);
// ... Set any other parameters you want to set ...
// Set parameters.
prec.setParameters (params);
// Prepare the relaxation instance for use.
prec.initialize ();
prec.compute ();
// Now prec may be used as a preconditioner or smoother,
// by calling its apply() method, just like any Tpetra::Operator.
\endcode
\section Ifpack_Relaxation_Algorithms Algorithms
We now briefly describe the relaxation algorithms this class
implements. Consider the linear system \f$Ax=b\f$, where \f$A\f$ is a
square matrix, and \f$x\f$ and \f$b\f$ are two vectors of compatible
dimensions. Suppose that \f$x^{(0)}\f$ is the starting vector and
\f$x^{(k)}\f$ is the approximate solution for \f$x\f$ computed by
iteration $k+1$ of whatever relaxation method we are using. Here,
\f$x^{(k)}_i\f$ is the $i$-th element of vector \f$x^{(k)}\f$.
The Jacobi method computes
\f[
x^{(k+1)}_i = A_{ii}^{-1} ( b_i - \sum_{j \neq i} A_{ij} x^{(k)}_j ).
\f]
The "damped" Jacobi method generalizes Jacobi. It introduces a
damping parameter \f$\omega \f$, and computes
\f[
x^{(k+1)}_i = (1 - \omega) x^{(k)}_i + \omega A_{ii}^{-1} ( b_i - \sum_{j \neq i} A_{ij} x^{(k)}_j ).
\f]
The "damped Gauss-Seidel method" is actually successive over-relaxation
(SOR), with Gauss-Seidel as a special case when the damping parameter
\f$\omega = 1\f$. We implement has two different sweep directions: Forward and
Backward. The Forward sweep direction computes
\f[
x^{(k+1)}_i = (1 - \omega) x^{(k)}_i + \omega A_{ii}^{-1} ( b_i - \sum_{j < i} A_{ij} x^{(k+1)}_j - \sum_{j > i} A_{ij} x^{(k)}_j ),
\f]
and the Backward sweep direction computes
\f[
x^{(k+1)}_i = (1 - \omega) x^{(k)}_i + \omega A_{ii}^{-1} ( b_i - \sum_{j > i} A_{ij} x^{(k+1)}_j - \sum_{j < i} A_{ij} x^{(k)}_j ),
\f]
Users may set the sweep direction via the "relaxation: backward mode"
option. See the documentation of setParameters() for details.
Gauss-Seidel / SOR also comes in a symmetric version. This method
first does a Forward sweep, then a Backward sweep. Only the symmetric
version of this preconditioner is guaranteed to be symmetric (or Hermitian,
if the matrix's data are complex).
Users may set the relaxation method via the "relaxation: type"
parameter. For all relaxation methods, users may specify the number
of sweeps per call to apply() and the damping parameter \f$\omega \f$.
For a list of all supported parameters, please refer to the
documentation of the setParameters() method. For advice on picking
\f$\omega \f$ for a preconditioner, please refer to the following
book: "Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition," R. Barrett et al., SIAM, 1994.
\note This class does not actually use the formulae above to apply
Jacobi or SOR. For example, the computational kernels for the above SOR
sweeps actually do not require branches in the inner loop to distinguish
between the lower triangle, diagonal, and upper triangle of A. One can
see this by multiplying through the forward sweep expression by \f$A_{ii}\f$
and combining terms, then dividing through again by \f$A_{ii}\f$. This
results in the expression
\f[
x^{(k+1)}_i = x^{(k)}_i + \omega b_i - \frac{\omega}{A_{ii}} ( \sum_{j \geq i} A_{ij} x^{(k)}_j + \sum_{j < i} x^{(k+1)}_j ).
\f]
Executing this expression in a forward sweep does not require
distinguishing between the lower and upper triangle of A. The
same thing holds for the backward sweep.
*/
template<class MatrixType>
class Relaxation :
virtual public Ifpack2::Preconditioner<typename MatrixType::scalar_type,
typename MatrixType::local_ordinal_type,
typename MatrixType::global_ordinal_type,
typename MatrixType::node_type>,
virtual public Ifpack2::Details::CanChangeMatrix<Tpetra::RowMatrix<typename MatrixType::scalar_type,
typename MatrixType::local_ordinal_type,
typename MatrixType::global_ordinal_type,
typename MatrixType::node_type> >
{
public:
//! @name Typedefs
//@{
//! The type of the entries of the input MatrixType.
typedef typename MatrixType::scalar_type scalar_type;
//! The type of local indices in the input MatrixType.
typedef typename MatrixType::local_ordinal_type local_ordinal_type;
//! The type of global indices in the input MatrixType.
typedef typename MatrixType::global_ordinal_type global_ordinal_type;
//! The Node type used by the input MatrixType.
typedef typename MatrixType::node_type node_type;
//! The type of the magnitude (absolute value) of a matrix entry.
typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;
//! Tpetra::RowMatrix specialization used by this class.
typedef Tpetra::RowMatrix<scalar_type, local_ordinal_type,
global_ordinal_type, node_type> row_matrix_type;
static_assert(std::is_same<MatrixType, row_matrix_type>::value, "Ifpack2::Relaxation: Please use MatrixType = Tpetra::RowMatrix. This saves build times, library sizes, and executable sizes. Don't worry, this class still works with CrsMatrix and BlockCrsMatrix; those are both subclasses of RowMatrix.");
//@}
//! @name Constructors and destructors
//@{
/// \brief Constructor.
///
/// \param A [in] The matrix for which to make the constructor.
/// Tpetra::RowMatrix is the base class of Tpetra::CrsMatrix, so
/// you may give either a Tpetra::RowMatrix or a Tpetra::CrsMatrix
/// here.
///
/// The results of apply() are undefined if you change the diagonal
/// entries of the sparse matrix after invoking this constructor.
/// In particular, the compute() method may extract the diagonal
/// entries and precompute their inverses, in order to speed up
/// Gauss-Seidel or to implement the L1 version of various
/// relaxation methods. If you plan to change the diagonal entries
/// of the matrix after making a Relaxation instance with that
/// matrix, you must destroy the old Relaxation instance and create
/// a new one after changing the diagonal entries.
///
/// The "explicit" keyword just means that you must invoke the
/// Relaxation constructor explicitly; you aren't allowed to use it
/// as an implicit conversion ("cast"). For example, you may do
/// this (namespaces and Tpetra template parameters omitted for
/// brevity):
/// \code
/// RCP<const CrsMatrix<...> > A = ...;
/// Relaxation<CrsMatrix<...> > R (A);
/// \endcode
/// but you may not do this:
/// \code
/// void foo (const Relaxation<CrsMatrix<...> >& R);
///
/// RCP<const CrsMatrix<...> > A = ...;
/// foo (A);
/// \endcode
explicit Relaxation (const Teuchos::RCP<const row_matrix_type>& A);
//! Destructor.
virtual ~Relaxation();
//@}
//! @name Preconditioner computation methods
//@{
/// \brief Set the relaxation / preconditioner parameters.
///
/// \warning All parameters are case sensitive. We make no attempt
/// to check the spelling of parameter names in your input list.
///
/// The "relaxation: type" (string) parameter sets the relaxation /
/// preconditioner method you want to use. It currently accepts the
/// following values (the default is "Jacobi"):
/// - "Jacobi"
/// - "Gauss-Seidel"
/// - "Symmetric Gauss-Seidel"
///
/// The "relaxation: sweeps" (int) parameter sets the number of
/// sweeps, that is, the number of times to apply the relaxation on
/// each invocation of apply(). The default number of sweeps is 1.
///
/// The "relaxation: damping factor" (scalar_type -- the type of the
/// entries of the matrix) parameter is the value of the damping
/// factor \f$\omega \f$. The main documentation of this class
/// explains how we use this value. The default value is 1.0.
///
/// The "relaxation: zero starting solution" (bool) parameter
/// governs whether or not we use the existing values in the output
/// multivector Y when applying the relaxation. Its default value
/// is true, meaning that we fill Y with zeros before applying
/// relaxation sweeps. If false, we use the existing values in Y.
///
/// If the "relaxation: backward mode" (bool) parameter is true, we
/// perform Gauss-Seidel in reverse mode. The default value is
/// false, meaning that we do forward-mode Gauss-Seidel. This only
/// affects standard Gauss-Seidel, not symmetric Gauss-Seidel.
///
/// The "relaxation: fix tiny diagonal entries" (bool) parameter
/// defaults to false. If true, the compute() method will do extra
/// work (computation only, no MPI communication) to "fix" diagonal
/// entries that are less than or equal to the threshold given by
/// the (magnitude of the) "relaxation: min diagonal value"
/// parameter. The default behavior imitates that of Aztec, which
/// does not do any special modification of the diagonal.
///
/// The "relaxation: min diagonal value" (scalar_type) parameter
/// only matters if "relaxation: fix tiny diagonal entries" (see
/// above) is true. This parameter limits how close to zero the
/// diagonal elements of the matrix are allowed to be. If the
/// magnitude of a diagonal element of the matrix is less than the
/// magnitude of this value, then we set that diagonal element to
/// this value. (We don't actually modify the matrix; we just
/// remember the diagonal values.) The use of magnitude rather than
/// the value itself makes this well defined if scalar_type is
/// complex. The default value of this parameter is zero, in which
/// case we will replace diagonal entries that are exactly equal to
/// zero with a small nonzero value (machine precision for the given
/// \c Scalar type) before inverting them. Note that if
/// "relaxation: fix tiny diagonal entries" is false, the default
/// value, this parameter does nothing.)
///
/// The "relaxation: check diagonal entries" (bool) parameter
/// defaults to false. If true, the compute() method will do extra
/// work (both computation and communication) to count diagonal
/// entries that are zero, have negative real part, or are small in
/// magnitude. The describe() method will then print this
/// information for you. You may find this useful for checking
/// whether your input matrix has issues that make Jacobi or
/// Gauss-Seidel a poor choice of preconditioner.
///
/// The last two parameters govern the L1 variant of Gauss-Seidel.
/// The "relaxation: use l1" (bool) parameter, if true, turns on the
/// L1 variant. (In "l1", the first character is a lower-case L,
/// and the second character is the numeral 1 (one).) This
/// parameter's value is false by default. The "relaxation: l1 eta"
/// (magnitude_type) parameter is the \f$\eta \f$ parameter
/// associated with that method; its default value is 1.5. Recall
/// that "magnitude_type" is the type of the absolute value of a
/// scalar_type value. This is the same as scalar_type for
/// real-valued floating-point types (like \c float and \c double).
/// If scalar_type is <tt>std::complex<T></tt> for some type \c T,
/// then magnitude_type is \c T.
void setParameters (const Teuchos::ParameterList& params);
//! Return a list of all the parameters that this class accepts.
Teuchos::RCP<const Teuchos::ParameterList>
getValidParameters () const;
/// \brief Initialize the preconditioner.
///
/// You may call this method before calling compute(). If you call
/// compute() before initialize() has been called on this object,
/// compute() will call initialize() for you. If you have already
/// called compute() and you call initialize(), you must call
/// compute() again before you may use the preconditioner (by
/// calling apply()).
void initialize ();
//! Returns \c true if the preconditioner has been successfully initialized.
inline bool isInitialized() const {
return isInitialized_;
}
/// \brief Compute the preconditioner.
///
/// You must call this method before calling apply(). You must also
/// call this method if the matrix's structure or values have
/// changed since the last time compute() has been called. If
/// initialize() has not yet been called, this method will call
/// initialize() for you.
void compute ();
//! Return true if compute() has been called.
inline bool isComputed() const {
return(IsComputed_);
}
//@}
//! \name Implementation of Ifpack2::Details::CanChangeMatrix
//@{
/// \brief Change the matrix to be preconditioned.
///
/// \param A [in] The new matrix.
///
/// \post <tt>! isInitialized ()</tt>
/// \post <tt>! isComputed ()</tt>
///
/// Calling this method with a matrix different than the current
/// matrix resets the preconditioner's state. After calling this
/// method with a nonnull input, you must first call initialize()
/// and compute() (in that order) before you may call apply().
///
/// You may call this method with a null input. If A is null, then
/// you may not call initialize() or compute() until you first call
/// this method again with a nonnull input. This method invalidates
/// any previous factorization whether or not A is null, so calling
/// setMatrix() with a null input is one way to clear the
/// preconditioner's state (and free any memory that it may be
/// using).
///
/// The new matrix A need not necessarily have the same Maps or even
/// the same communicator as the original matrix.
virtual void
setMatrix (const Teuchos::RCP<const row_matrix_type>& A);
//@}
//! @name Implementation of the Tpetra::Operator interface
//@{
/// \brief Apply the preconditioner to X, returning the result in Y.
///
/// This method computes Y = beta*Y + alpha*M*X, where M*X
/// represents the action of the preconditioner on the input
/// multivector X.
///
/// \param X [in] The multivector input of the preconditioner.
/// \param Y [in/out] The multivector output of the preconditioner.
/// \param mode [in] Whether to apply the transpose or conjugate
/// transpose of the preconditioner. Not all preconditioners
/// support options other than the default (no transpose); please
/// call hasTransposeApply() to determine whether nondefault
/// options are supported.
/// \param alpha [in] Scaling factor for the preconditioned input.
/// \param beta [in] Scaling factor for the output.
void
apply (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;
//! Returns the Tpetra::Map object associated with the domain of this operator.
Teuchos::RCP<const Tpetra::Map<local_ordinal_type,global_ordinal_type,node_type> >
getDomainMap () const;
//! Returns the Tpetra::Map object associated with the range of this operator.
Teuchos::RCP<const Tpetra::Map<local_ordinal_type,global_ordinal_type,node_type> >
getRangeMap () const;
//! Whether apply() and applyMat() let you apply the transpose or conjugate transpose.
bool hasTransposeApply () const;
/// \brief Apply the preconditioner to X, returning the result in Y.
///
/// This method computes Y = M*X, where M*X represents the action of
/// the preconditioner on the input multivector X.
///
/// \param X [in] The multivector input of the preconditioner.
/// \param Y [in/out] The multivector output of the preconditioner.
/// \param mode [in] Whether to apply the transpose or conjugate
/// transpose of the preconditioner. Not all preconditioners
/// support options other than the default (no transpose); please
/// call hasTransposeApply() to determine whether nondefault
/// options are supported.
void
applyMat (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y,
Teuchos::ETransp mode = Teuchos::NO_TRANS) const;
//@}
//! @name Attribute accessor methods
//@{
//! The communicator over which the matrix and vectors are distributed.
Teuchos::RCP<const Teuchos::Comm<int> > getComm() const;
//! The matrix to be preconditioned.
Teuchos::RCP<const row_matrix_type> getMatrix () const;
//! Total number of floating-point operations over all calls to compute().
double getComputeFlops() const;
//! Total number of floating-point operations over all calls to apply().
double getApplyFlops() const;
//! Total number of calls to initialize().
int getNumInitialize() const;
//! Total number of calls to compute().
int getNumCompute() const;
//! Total number of calls to apply().
int getNumApply() const;
//! Total time in seconds spent in all calls to initialize().
double getInitializeTime() const;
//! Total time in seconds spent in all calls to compute().
double getComputeTime() const;
//! Total time in seconds spent in all calls to apply().
double getApplyTime() const;
//@}
//! @name Implementation of Teuchos::Describable interface
//@{
/// \brief A simple one-line description of this object.
///
/// Be aware that this will print a very long line, because some
/// users really like to see all the attributes of the object in a
/// single line. If you prefer multiple lines of output, you should
/// call describe() instead.
std::string description () const;
/// \brief Print the object's attributes to the given output stream.
///
/// This method will print a constant amount of information (not
/// proportional to the matrix's dimensions or number of entries) on
/// Process 0 of the communicator over which this object is
/// distributed.
///
/// You may wrap an std::ostream in a Teuchos::FancyOStream by
/// including "Teuchos_FancyOStream.hpp" and calling
/// Teuchos::getFancyOStream(). For example:
/// \code
/// using Teuchos::RCP;
/// using Teuchos::rcpFromRef;
/// using Teuchos::FancyOStream;
///
/// // Wrap std::cout in a FancyOStream.
/// RCP<FancyOStream> wrappedCout = getFancyOStream (rcpFromRef (std::cout));
///
/// // Wrap an output file in a FancyOStream.
/// RCP<std::ofstream> outFile (new std::ofstream ("myFile.txt"));
/// RCP<FancyOStream> wrappedFile = getFancyOStream (outFile);
/// \endcode
void
describe (Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel =
Teuchos::Describable::verbLevel_default) const;
//@}
private:
//! \name Internal typedefs
//@{
typedef Teuchos::ScalarTraits<scalar_type> STS;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
/// \brief Tpetra::CrsMatrix specialization used by this class.
///
/// We use this for dynamic casts to dispatch to the most efficient
/// implementation of various relaxation kernels.
typedef Tpetra::CrsMatrix<scalar_type, local_ordinal_type,
global_ordinal_type, node_type> crs_matrix_type;
typedef Tpetra::Experimental::BlockCrsMatrix<scalar_type, local_ordinal_type,
global_ordinal_type, node_type> block_crs_matrix_type;
typedef Tpetra::Experimental::BlockMultiVector<scalar_type, local_ordinal_type,
global_ordinal_type, node_type> block_multivector_type;
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
typedef typename crs_matrix_type::local_matrix_type kokkos_csr_matrix;
typedef typename kokkos_csr_matrix::StaticCrsGraphType crs_graph_type;
typedef typename kokkos_csr_matrix::StaticCrsGraphType::row_map_type lno_row_view_t;
typedef typename kokkos_csr_matrix::StaticCrsGraphType::entries_type lno_nonzero_view_t;
typedef typename kokkos_csr_matrix::values_type scalar_nonzero_view_t;
typedef typename kokkos_csr_matrix::StaticCrsGraphType::device_type TemporaryWorkSpace;
typedef typename kokkos_csr_matrix::StaticCrsGraphType::device_type PersistentWorkSpace;
typedef typename kokkos_csr_matrix::StaticCrsGraphType::execution_space MyExecSpace;
typedef typename KokkosKernels::Experimental::KokkosKernelsHandle
<lno_row_view_t,lno_nonzero_view_t, scalar_nonzero_view_t,
MyExecSpace, TemporaryWorkSpace,PersistentWorkSpace > KernelHandle;
Teuchos::RCP<KernelHandle> kh;
#endif
//@}
//! \name Unimplemented methods that you are syntactically forbidden to call.
//@{
//! Copy constructor (not implemented; you are not allowed to call this).
Relaxation (const Relaxation<MatrixType>& RHS);
//! Assignment operator (not implemented; you are not allowed to call this).
Relaxation<MatrixType>& operator= (const Relaxation<MatrixType>& RHS);
//@}
//! @name Internal methods
//@{
/// \brief Variant of setParameters() that takes a nonconst Teuchos::ParameterList.
///
/// This variant fills in default values for any valid parameters
/// that are not in the input list.
void setParametersImpl (Teuchos::ParameterList& params);
//! Apply Jacobi to X, returning the result in Y.
void ApplyInverseJacobi(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply Jacobi to X, returning the result in Y.
void ApplyInverseJacobi_BlockCrsMatrix(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply Gauss-Seidel to X, returning the result in Y.
void ApplyInverseGS(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply multi-threaded Gauss-Seidel to X, returning the result in Y.
void ApplyInverseMTGS_CrsMatrix(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply Gauss-Seidel for a Tpetra::RowMatrix specialization.
void ApplyInverseGS_RowMatrix(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply Gauss-Seidel for a Tpetra::CrsMatrix specialization.
void
ApplyInverseGS_CrsMatrix (const crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply Gauss-Seidel for a Tpetra::Experimental::BlockCrsMatrix specialization.
void
ApplyInverseGS_BlockCrsMatrix (const block_crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y);
//! Apply symmetric Gauss-Seidel to X, returning the result in Y.
void ApplyInverseSGS(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply symmetric multi-threaded Gauss-Seidel to X, returning the result in Y.
void ApplyInverseMTSGS_CrsMatrix(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
void MTGaussSeidel (
const crs_matrix_type* crsMat,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& B,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& D,
const scalar_type& dampingFactor,
const Tpetra::ESweepDirection direction,
const int numSweeps,
const bool zeroInitialGuess) const;
//! Apply symmetric Gauss-Seidel for a Tpetra::RowMatrix specialization.
void ApplyInverseSGS_RowMatrix(
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply symmetric Gauss-Seidel for a Tpetra::CrsMatrix specialization.
void
ApplyInverseSGS_CrsMatrix (const crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const;
//! Apply symmetric Gauss-Seidel for a Tpetra::ExperimentalBlockCrsMatrix specialization.
void
ApplyInverseSGS_BlockCrsMatrix (const block_crs_matrix_type& A,
const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y);
void computeBlockCrs ();
//@}
//! @name Internal data and parameters
//@{
/// \brief List of valid parameters.
///
/// This is created on demand by getValidParameters(). That method
/// is const to help comply with the Teuchos::ParameterListAcceptor
/// interface (which we might like to use later), which is why we
/// have to declare this field \c mutable.
mutable Teuchos::RCP<const Teuchos::ParameterList> validParams_;
//! The matrix for which to construct the preconditioner or smoother.
Teuchos::RCP<const row_matrix_type> A_;
//! Time object to track timing.
Teuchos::RCP<Teuchos::Time> Time_;
//! Importer for parallel Gauss-Seidel and symmetric Gauss-Seidel.
Teuchos::RCP<const Tpetra::Import<local_ordinal_type,global_ordinal_type,node_type> > Importer_;
//! Contains the diagonal elements of \c A_.
Teuchos::RCP<Tpetra::Vector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> > Diagonal_;
typedef Kokkos::View<typename block_crs_matrix_type::impl_scalar_type***,
typename block_crs_matrix_type::device_type> block_diag_type;
typedef Kokkos::View<typename block_crs_matrix_type::impl_scalar_type***,
typename block_crs_matrix_type::device_type,
Kokkos::MemoryUnmanaged> unmanaged_block_diag_type;
/// \brief Storage of the BlockCrsMatrix's block diagonal.
///
/// This is only allocated and used if the input matrix is a
/// Tpetra::BlockCrsMatrix. In that case, Ifpack2::Relaxation does
/// block relaxation, using the (small dense) blocks in the
/// BlockCrsMatrix.
///
/// "Block diagonal" means the blocks in the BlockCrsMatrix
/// corresponding to the diagonal entries of the BlockCrsMatrix's
/// graph. To get the block corresponding to local (graph
/// a.k.a. "mesh") row index i, do the following:
/// \code
/// auto D_ii = Kokkos::subview (blockDiag_, i, Kokkos::ALL (), Kokkos::ALL ());
/// \endcode
block_diag_type blockDiag_;
Teuchos::RCP<block_multivector_type> yBlockColumnPointMap_;
//! How many times to apply the relaxation per apply() call.
int NumSweeps_;
//! Which relaxation method to use.
Details::RelaxationType PrecType_;
//! Damping factor
scalar_type DampingFactor_;
//! If \c true, more than 1 processor is currently used.
bool IsParallel_;
//! If \c true, the starting solution is always the zero vector.
bool ZeroStartingSolution_;
//! If true, do backward-mode Gauss-Seidel.
bool DoBackwardGS_;
//! If true, do the L1 version of Jacobi, Gauss-Seidel, or symmetric Gauss-Seidel.
bool DoL1Method_;
//! Eta parameter for modified L1 method
magnitude_type L1Eta_;
//! Minimum diagonal value
scalar_type MinDiagonalValue_;
//! Whether to fix up zero or tiny diagonal entries.
bool fixTinyDiagEntries_;
//! Whether to spend extra effort and all-reduces checking diagonal entries.
bool checkDiagEntries_;
//! If \c true, the preconditioner has been initialized successfully.
bool isInitialized_;
//! If \c true, the preconditioner has been computed successfully.
bool IsComputed_;
//! The number of successful calls to initialize().
int NumInitialize_;
//! the number of successful calls to compute().
int NumCompute_;
//! The number of successful calls to apply().
mutable int NumApply_;
//! Total time in seconds for all successful calls to initialize().
double InitializeTime_;
//! Total time in seconds for all successful calls to compute().
double ComputeTime_;
//! Total time in seconds for all successful calls to apply().
mutable double ApplyTime_;
//! The total number of floating-point operations for all successful calls to compute().
double ComputeFlops_;
//! The total number of floating-point operations for all successful calls to apply().
mutable double ApplyFlops_;
//! Global magnitude of the diagonal entry with the minimum magnitude.
magnitude_type globalMinMagDiagEntryMag_;
//! Global magnitude of the diagonal entry with the maximum magnitude.
magnitude_type globalMaxMagDiagEntryMag_;
//! Global number of small (in magnitude) diagonal entries detected by compute().
size_t globalNumSmallDiagEntries_;
//! Global number of zero diagonal entries detected by compute().
size_t globalNumZeroDiagEntries_;
//! Global number of negative (real part) diagonal entries detected by compute().
size_t globalNumNegDiagEntries_;
/// \brief Absolute two-norm difference between computed and actual inverse diagonal.
///
/// "Actual inverse diagonal" means the result of 1/diagonal,
/// without any protection against zero or small diagonal entries.
magnitude_type globalDiagNormDiff_;
/// \brief Precomputed offsets of local diagonal entries of the matrix.
///
/// These are only used if the matrix has a const ("static") graph.
/// In that case, the offsets of the diagonal entries will never
/// change, even if the values of the diagonal entries change.
Kokkos::View<size_t*, typename node_type::device_type> diagOffsets_;
/// \brief Whether we have precomputed offsets of diagonal entries.
///
/// We need this flag because it is not enough just to test if
/// diagOffsets_ has size zero. It is perfectly legitimate for the
/// matrix to have zero rows on the calling process.
bool savedDiagOffsets_;
bool hasBlockCrsMatrix_;
/// \brief In case of local/reordered smoothing, the unknowns to use
Teuchos::ArrayRCP<local_ordinal_type> localSmoothingIndices_;
//@}
}; //class Relaxation
}//namespace Ifpack2
#endif // IFPACK2_RELAXATION_DECL_HPP
|