/usr/include/trilinos/Ifpack2_DenseContainer_def.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_DENSECONTAINER_DEF_HPP
#define IFPACK2_DENSECONTAINER_DEF_HPP
#include "Tpetra_CrsMatrix.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Tpetra_Experimental_BlockMultiVector.hpp"
#ifdef HAVE_MPI
# include <mpi.h>
# include "Teuchos_DefaultMpiComm.hpp"
#else
# include "Teuchos_DefaultSerialComm.hpp"
#endif // HAVE_MPI
namespace Ifpack2 {
template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, true>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
const Teuchos::RCP<const import_type>& importer,
int OverlapLevel,
scalar_type DampingFactor) :
Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
DampingFactor),
scalars_ (nullptr),
scalarOffsets_ (this->numBlocks_)
{
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::ptr;
using Teuchos::toString;
typedef typename ArrayView<const local_ordinal_type>::size_type size_type;
TEUCHOS_TEST_FOR_EXCEPTION(
!matrix->hasColMap(), std::invalid_argument, "Ifpack2::DenseContainer: "
"The constructor's input matrix must have a column Map.");
//compute scalarOffsets_
global_ordinal_type totalScalars = 0;
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
{
scalarOffsets_[i] = totalScalars;
totalScalars += this->blockRows_[i] * this->blockRows_[i]
* this->bcrsBlockSize_ * this->bcrsBlockSize_;
}
scalars_ = new local_scalar_type[totalScalars];
for(int i = 0; i < this->numBlocks_; i++)
{
int nnodes = this->blockRows_[i];
int denseRows = nnodes * this->bcrsBlockSize_;
//create square dense matrix (stride is same as rows and cols)
diagBlocks_.emplace_back(Teuchos::View, scalars_ + scalarOffsets_[i], denseRows, denseRows, denseRows);
diagBlocks_[i].putScalar(0);
}
ipiv_.resize(this->partitions_.size() * this->bcrsBlockSize_);
for(int i = 0; i < this->numBlocks_; i++)
{
Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
// Check whether the input set of local row indices is correct.
const map_type& rowMap = * (matrix->getRowMap ());
const size_type numRows = localRows.size ();
bool rowIndicesValid = true;
Array<local_ordinal_type> invalidLocalRowIndices;
for(size_type j = 0; j < numRows; j++) {
if(!rowMap.isNodeLocalElement(localRows[j])) {
rowIndicesValid = false;
invalidLocalRowIndices.push_back(localRows[j]);
break;
}
}
TEUCHOS_TEST_FOR_EXCEPTION(
!rowIndicesValid, std::invalid_argument, "Ifpack2::DenseContainer: "
"On process " << rowMap.getComm()->getRank() << " of "
<< rowMap.getComm()->getSize() << ", in the given set of local row "
"indices localRows = " << toString(localRows) << ", the following "
"entries are not valid local row indices on the calling process: "
<< toString(invalidLocalRowIndices) << ".");
}
IsInitialized_ = false;
IsComputed_ = false;
}
template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, true>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<local_ordinal_type>& localRows) :
Container<MatrixType>(matrix, localRows),
scalars_(nullptr)
{
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::toString;
typedef typename ArrayView<const local_ordinal_type>::size_type size_type;
TEUCHOS_TEST_FOR_EXCEPTION(
!matrix->hasColMap(), std::invalid_argument, "Ifpack2::DenseContainer: "
"The constructor's input matrix must have a column Map.");
diagBlocks_.emplace_back(this->blockRows_[0] * this->bcrsBlockSize_,
this->blockRows_[0] * this->bcrsBlockSize_);
diagBlocks_[0].putScalar(0);
ipiv_.resize(this->partitions_.size() * this->bcrsBlockSize_);
for(int i = 0; i < this->numBlocks_; i++)
{
ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
// Check whether the input set of local row indices is correct.
const map_type& rowMap = *(matrix->getRowMap());
const size_type numRows = localRows.size ();
bool rowIndicesValid = true;
Array<local_ordinal_type> invalidLocalRowIndices;
for(size_type j = 0; j < numRows; j++)
{
if(!rowMap.isNodeLocalElement(localRows[j]))
{
rowIndicesValid = false;
invalidLocalRowIndices.push_back(localRows[j]);
break;
}
}
TEUCHOS_TEST_FOR_EXCEPTION(
!rowIndicesValid, std::invalid_argument, "Ifpack2::DenseContainer: "
"On process " << rowMap.getComm()->getRank() << " of "
<< rowMap.getComm()->getSize() << ", in the given set of local row "
"indices localRows = " << toString (localRows) << ", the following "
"entries are not valid local row indices on the calling process: "
<< toString(invalidLocalRowIndices) << ".");
}
// FIXME (mfh 25 Aug 2013) What if the matrix's row Map has a
// different index base than zero?
IsInitialized_ = false;
IsComputed_ = false;
}
template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, true>::~DenseContainer()
{
if(scalars_)
delete[] scalars_;
}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, true>::
setParameters (const Teuchos::ParameterList& /* List */)
{
// the solver doesn't currently take any parameters
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
initialize ()
{
using Teuchos::null;
using Teuchos::rcp;
// We assume that if you called this method, you intend to recompute
// everything.
IsInitialized_ = false;
IsComputed_ = false;
// Fill the diagonal block and LU permutation array with zeros.
for(int i = 0; i < this->numBlocks_; i++)
diagBlocks_[i].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
std::fill (ipiv_.begin (), ipiv_.end (), 0);
IsInitialized_ = true;
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
compute ()
{
// FIXME: I am commenting this out because it breaks block CRS support
// TEUCHOS_TEST_FOR_EXCEPTION(
// static_cast<size_t> (ipiv_.size ()) != numRows_, std::logic_error,
// "Ifpack2::DenseContainer::compute: ipiv_ array has the wrong size. "
// "Please report this bug to the Ifpack2 developers.");
IsComputed_ = false;
if (! this->isInitialized ()) {
this->initialize();
}
// Extract the submatrix.
extract ();
factor (); // factor the submatrices
IsComputed_ = true;
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
factor ()
{
Teuchos::LAPACK<int, local_scalar_type> lapack;
for(int i = 0; i < this->numBlocks_; i++)
{
int INFO = 0;
int* blockIpiv = ipiv_.getRawPtr() + this->partitionIndices_[i] * this->bcrsBlockSize_;
lapack.GETRF(diagBlocks_[i].numRows(),
diagBlocks_[i].numCols(),
diagBlocks_[i].values(),
diagBlocks_[i].stride(),
blockIpiv, &INFO);
// INFO < 0 is a bug.
TEUCHOS_TEST_FOR_EXCEPTION(
INFO < 0, std::logic_error, "Ifpack2::DenseContainer::factor: "
"LAPACK's _GETRF (LU factorization with partial pivoting) was called "
"incorrectly. INFO = " << INFO << " < 0. "
"Please report this bug to the Ifpack2 developers.");
// INFO > 0 means the matrix is singular. This is probably an issue
// either with the choice of rows the rows we extracted, or with the
// input matrix itself.
TEUCHOS_TEST_FOR_EXCEPTION(
INFO > 0, std::runtime_error, "Ifpack2::DenseContainer::factor: "
"LAPACK's _GETRF (LU factorization with partial pivoting) reports that the "
"computed U factor is exactly singular. U(" << INFO << "," << INFO << ") "
"(one-based index i) is exactly zero. This probably means that the input "
"matrix has a singular diagonal block.");
}
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
applyImplBlockCrs (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
local_scalar_type alpha,
local_scalar_type beta) const
{
using Teuchos::ArrayRCP;
using Teuchos::Ptr;
using Teuchos::ptr;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
typedef Teuchos::ScalarTraits<local_scalar_type> STS;
const size_t numRows = X.dimension_0();
const size_t numVecs = X.dimension_1();
TEUCHOS_TEST_FOR_EXCEPTION(
static_cast<size_t> (X.dimension_0 ()) != static_cast<size_t> (diagBlocks_[blockIndex].numRows ()),
std::logic_error, "Ifpack2::DenseContainer::applyImpl: X and Y have "
"different number of rows than block matrix (" << X.dimension_0() << " resp. "
<< diagBlocks_[blockIndex].numRows() << "). Please report this bug to "
"the Ifpack2 developers.");
if (alpha == STS::zero ()) { // don't need to solve the linear system
if (beta == STS::zero ()) {
// Use BLAS AXPY semantics for beta == 0: overwrite, clobbering
// any Inf or NaN values in Y (rather than multiplying them by
// zero, resulting in NaN values).
for(size_t i = 0; i < numRows; i++)
for(size_t j = 0; j < numVecs; j++)
Y(i, j) = STS::zero();
}
else { // beta != 0
for(size_t i = 0; i < numRows; i++)
for(size_t j = 0; j < numVecs; j++)
Y(i, j) *= beta;
}
}
else { // alpha != 0; must solve the linear system
Teuchos::LAPACK<int, local_scalar_type> lapack;
// If beta is nonzero or Y is not constant stride, we have to use
// a temporary output multivector. It gets a (deep) copy of X,
// since GETRS overwrites its (multi)vector input with its output.
Ptr<HostViewLocal> Y_tmp;
bool deleteYT = false;
if (beta == STS::zero () ){
Kokkos::deep_copy(Y, X);
Y_tmp = ptr(&Y);
}
else {
Y_tmp = ptr (new HostViewLocal ("", X.dimension_0(), X.dimension_1()));
Kokkos::deep_copy(*Y_tmp, X);
deleteYT = true;
}
local_scalar_type* const Y_ptr = (local_scalar_type*) Y_tmp->ptr_on_device();
int INFO = 0;
const char trans =
(mode == Teuchos::CONJ_TRANS ? 'C' : (mode == Teuchos::TRANS ? 'T' : 'N'));
int* blockIpiv = (int*) ipiv_.getRawPtr()
+ this->partitionIndices_[blockIndex] * this->bcrsBlockSize_;
lapack.GETRS (trans,
diagBlocks_[blockIndex].numRows (),
numVecs,
diagBlocks_[blockIndex].values (),
diagBlocks_[blockIndex].stride (),
blockIpiv,
Y_ptr,
stride, &INFO);
TEUCHOS_TEST_FOR_EXCEPTION(
INFO != 0, std::runtime_error, "Ifpack2::DenseContainer::applyImpl: "
"LAPACK's _GETRS (solve using LU factorization with partial pivoting) "
"failed with INFO = " << INFO << " != 0.");
if (beta != STS::zero ()) {
for(size_t i = 0; i < Y.dimension_0(); i++)
{
for(size_t j = 0; j < Y.dimension_1(); j++)
{
Y(i, j) *= beta;
Y(i, j) += alpha * (*Y_tmp)(i, j);
}
}
}
if(deleteYT)
delete Y_tmp.get();
}
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
applyImpl (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
local_scalar_type alpha,
local_scalar_type beta) const
{
using Teuchos::ArrayRCP;
using Teuchos::Ptr;
using Teuchos::ptr;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_0 () != Y.dimension_0 (),
std::logic_error, "Ifpack2::DenseContainer::applyImpl: X and Y have "
"incompatible dimensions (" << X.dimension_0 () << " resp. "
<< Y.dimension_0 () << "). Please report this bug to "
"the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_1 () != Y.dimension_1(),
std::logic_error, "Ifpack2::DenseContainer::applyImpl: X and Y have "
"incompatible numbers of vectors (" << X.dimension_1 () << " resp. "
<< Y.dimension_1 () << "). Please report this bug to "
"the Ifpack2 developers.");
if(this->hasBlockCrs_) {
applyImplBlockCrs(X,Y,blockIndex,stride,mode,alpha,beta);
return;
}
typedef Teuchos::ScalarTraits<local_scalar_type> STS;
size_t numVecs = X.dimension_1();
if(alpha == STS::zero()) { // don't need to solve the linear system
if(beta == STS::zero()) {
// Use BLAS AXPY semantics for beta == 0: overwrite, clobbering
// any Inf or NaN values in Y (rather than multiplying them by
// zero, resulting in NaN values).
for(size_t i = 0; i < Y.dimension_0(); i++)
{
for(size_t j = 0; j < Y.dimension_1(); j++)
Y(i, j) = STS::zero();
}
}
else // beta != 0
for(size_t i = 0; i < Y.dimension_0(); i++)
{
for(size_t j = 0; j < Y.dimension_1(); j++)
Y(i, j) *= beta;
}
}
else { // alpha != 0; must solve the linear system
Teuchos::LAPACK<int, local_scalar_type> lapack;
// If beta is nonzero or Y is not constant stride, we have to use
// a temporary output multivector. It gets a (deep) copy of X,
// since GETRS overwrites its (multi)vector input with its output.
Ptr<HostViewLocal> Y_tmp;
bool deleteYT = false;
if (beta == STS::zero () ){
Kokkos::deep_copy (Y, X);
Y_tmp = ptr (&Y);
}
else {
Y_tmp = ptr (new HostViewLocal ("", Y.dimension_0(), Y.dimension_1()));
deleteYT = true;
}
local_scalar_type* Y_ptr = (local_scalar_type*) Y_tmp->ptr_on_device();
int INFO = 0;
int* blockIpiv = (int*) ipiv_.getRawPtr() + this->partitionIndices_[blockIndex] * this->bcrsBlockSize_;
const char trans =
(mode == Teuchos::CONJ_TRANS ? 'C' : (mode == Teuchos::TRANS ? 'T' : 'N'));
lapack.GETRS (trans,
diagBlocks_[blockIndex].numRows (),
numVecs,
diagBlocks_[blockIndex].values (),
diagBlocks_[blockIndex].stride (),
blockIpiv,
Y_ptr,
stride, &INFO);
TEUCHOS_TEST_FOR_EXCEPTION(
INFO != 0, std::runtime_error, "Ifpack2::DenseContainer::applyImpl: "
"LAPACK's _GETRS (solve using LU factorization with partial pivoting) "
"failed with INFO = " << INFO << " != 0.");
if (beta != STS::zero ()) {
for(size_t i = 0; i < Y.dimension_0(); i++)
{
for(size_t j = 0; j < Y.dimension_1(); j++)
Y(i, j) = Y(i, j) * (local_impl_scalar_type) beta + (local_impl_scalar_type) alpha * (*Y_tmp)(i, j);
}
}
if(deleteYT)
delete Y_tmp.get();
}
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
applyBlockCrs (HostView& XIn,
HostView& YIn,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::ArrayView;
using Teuchos::ArrayRCP;
using Teuchos::as;
using Teuchos::RCP;
using Teuchos::rcp;
const size_t numRows = this->blockRows_[blockIndex];
// The local operator might have a different Scalar type than
// MatrixType. This means that we might have to convert X and Y to
// the Tpetra::MultiVector specialization that the local operator
// wants. This class' X_ and Y_ internal fields are of the right
// type for the local operator, so we can use those as targets.
const char prefix[] = "Ifpack2::DenseContainer::weightedApply: ";
TEUCHOS_TEST_FOR_EXCEPTION(
! IsComputed_, std::runtime_error, prefix << "You must have called the "
"compute() method before you may call this method. You may call "
"apply() as many times as you want after calling compute() once, "
"but you must have called compute() at least once first.");
const size_t numVecs = XIn.dimension_1 ();
TEUCHOS_TEST_FOR_EXCEPTION(
numVecs != YIn.dimension_1 (), std::runtime_error,
prefix << "X and Y have different numbers of vectors (columns). X has "
<< XIn.dimension_1 () << ", but Y has " << YIn.dimension_1 () << ".");
if (numVecs == 0) {
return; // done! nothing to do
}
// The local operator works on a permuted subset of the local parts
// of X and Y. The subset and permutation are defined by the index
// array returned by getLocalRows(). If the permutation is trivial
// and the subset is exactly equal to the local indices, then we
// could use the local parts of X and Y exactly, without needing to
// permute. Otherwise, we have to use temporary storage to permute
// X and Y. For now, we always use temporary storage.
//
// Create temporary permuted versions of the input and output.
// (Re)allocate X_ and/or Y_ only if necessary. We'll use them to
// store the permuted versions of X resp. Y. Note that X_local has
// the domain Map of the operator, which may be a permuted subset of
// the local Map corresponding to X.getMap(). Similarly, Y_local
// has the range Map of the operator, which may be a permuted subset
// of the local Map corresponding to Y.getMap(). numRows_ here
// gives the number of rows in the row Map of the local Inverse_
// operator.
//
// FIXME (mfh 20 Aug 2013) There might be an implicit assumption
// here that the row Map and the range Map of that operator are
// the same.
//
// FIXME (mfh 20 Aug 2013) This "local permutation" functionality
// really belongs in Tpetra.
if(X_local.size() == 0)
{
//create all X_local and Y_local managed Views at once, are
//reused in subsequent apply() calls
for(int i = 0; i < this->numBlocks_; i++)
{
X_local.emplace_back("", this->blockRows_[i] * this->bcrsBlockSize_, numVecs);
}
for(int i = 0; i < this->numBlocks_; i++)
{
Y_local.emplace_back("", this->blockRows_[i] * this->bcrsBlockSize_, numVecs);
}
}
HostViewLocal& XOut = X_local[blockIndex];
HostViewLocal& YOut = Y_local[blockIndex];
ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
// Gather x
for (size_t j = 0; j < numVecs; ++j) {
for (size_t i = 0; i < numRows; ++i) {
const size_t i_perm = localRows[i];
for (int k = 0; k < this->bcrsBlockSize_; ++k)
XOut(i*this->bcrsBlockSize_+k, j) = XIn(i_perm*this->bcrsBlockSize_+k, j);
}
}
// We must gather the contents of the output multivector Y even on
// input to applyImpl(), since the inverse operator might use it as
// an initial guess for a linear solve. We have no way of knowing
// whether it does or does not.
// gather Y
for (size_t j = 0; j < numVecs; ++j) {
for (size_t i = 0; i < numRows; ++i) {
const size_t i_perm = localRows[i];
for (int k = 0; k < this->bcrsBlockSize_; ++k)
YOut(i*this->bcrsBlockSize_+k, j) = YIn(i_perm*this->bcrsBlockSize_+k, j);
}
}
// Apply the local operator:
// Y_local := beta*Y_local + alpha*M^{-1}*X_local
this->applyImpl (XOut, YOut, blockIndex, stride, mode, as<local_scalar_type>(alpha),
as<local_scalar_type>(beta));
// Scatter the permuted subset output vector Y_local back into the
// original output multivector Y.
for(size_t j = 0; j < numVecs; ++j) {
for(size_t i = 0; i < numRows; ++i) {
const size_t i_perm = localRows[i];
for(int k = 0; k < this->bcrsBlockSize_; ++k)
YIn(i_perm*this->bcrsBlockSize_+k, j) = YOut(i*this->bcrsBlockSize_+k, j);
}
}
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
apply (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::RCP;
using Teuchos::rcp;
// if we have a block CRS matrix, call the appropriate method
if(this->hasBlockCrs_) {
applyBlockCrs(X,Y,blockIndex,stride,mode,alpha,beta);
return;
}
const size_t numVecs = X.dimension_1();
// The local operator might have a different Scalar type than
// MatrixType. This means that we might have to convert X and Y to
// the Tpetra::MultiVector specialization that the local operator
// wants. This class' X_ and Y_ internal fields are of the right
// type for the local operator, so we can use those as targets.
const char prefix[] = "Ifpack2::DenseContainer::weightedApply: ";
TEUCHOS_TEST_FOR_EXCEPTION(
! IsComputed_, std::runtime_error, prefix << "You must have called the "
"compute() method before you may call this method. You may call "
"apply() as many times as you want after calling compute() once, "
"but you must have called compute() at least once first.");
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_1 () != Y.dimension_1 (), std::runtime_error,
prefix << "X and Y have different numbers of vectors (columns). X has "
<< X.dimension_1 () << ", but Y has " << Y.dimension_1 () << ".");
if (numVecs == 0) {
return; // done! nothing to do
}
// The local operator works on a permuted subset of the local parts
// of X and Y. The subset and permutation are defined by the index
// array returned by getLocalRows(). If the permutation is trivial
// and the subset is exactly equal to the local indices, then we
// could use the local parts of X and Y exactly, without needing to
// permute. Otherwise, we have to use temporary storage to permute
// X and Y. For now, we always use temporary storage.
//
// Create temporary permuted versions of the input and output.
// (Re)allocate X_ and/or Y_ only if necessary. We'll use them to
// store the permuted versions of X resp. Y. Note that X_local has
// the domain Map of the operator, which may be a permuted subset of
// the local Map corresponding to X.getMap(). Similarly, Y_local
// has the range Map of the operator, which may be a permuted subset
// of the local Map corresponding to Y.getMap(). numRows_ here
// gives the number of rows in the row Map of the local Inverse_
// operator.
//
// FIXME (mfh 20 Aug 2013) There might be an implicit assumption
// here that the row Map and the range Map of that operator are
// the same.
//
// FIXME (mfh 20 Aug 2013) This "local permutation" functionality
// really belongs in Tpetra.
if(X_local.size() == 0)
{
//create all X_local and Y_local managed Views at once, are
//reused in subsequent apply() calls
for(int i = 0; i < this->numBlocks_; i++)
{
X_local.emplace_back("", this->blockRows_[i], numVecs);
}
for(int i = 0; i < this->numBlocks_; i++)
{
Y_local.emplace_back("", this->blockRows_[i], numVecs);
}
}
const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
mvgs.gatherViewToView (X_local[blockIndex], X, localRows);
// We must gather the contents of the output multivector Y even on
// input to applyImpl(), since the inverse operator might use it as
// an initial guess for a linear solve. We have no way of knowing
// whether it does or does not.
mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);
// Apply the local operator:
// Y_local := beta*Y_local + alpha*M^{-1}*X_local
this->applyImpl (X_local[blockIndex], Y_local[blockIndex], blockIndex, stride, mode,
as<local_scalar_type>(alpha), as<local_scalar_type>(beta));
// Scatter the permuted subset output vector Y_local back into the
// original output multivector Y.
mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, true>::
weightedApply (HostView& X,
HostView& Y,
HostView& D,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::Range1D;
using Teuchos::Ptr;
using Teuchos::ptr;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcp_const_cast;
using std::endl;
typedef Teuchos::ScalarTraits<scalar_type> STS;
// The local operator template parameter might have a different
// Scalar type than MatrixType. This means that we might have to
// convert X and Y to the Tpetra::MultiVector specialization that
// the local operator wants. This class' X_ and Y_ internal fields
// are of the right type for the local operator, so we can use those
// as targets.
const char prefix[] = "Ifpack2::DenseContainer::weightedApply: ";
TEUCHOS_TEST_FOR_EXCEPTION(
! IsComputed_, std::runtime_error, prefix << "You must have called the "
"compute() method before you may call this method. You may call "
"weightedApply() as many times as you want after calling compute() once, "
"but you must have called compute() at least once first.");
const size_t numVecs = X.dimension_1();
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_1() != Y.dimension_1(), std::runtime_error,
prefix << "X and Y have different numbers of vectors (columns). X has "
<< X.dimension_1() << ", but Y has " << Y.dimension_1() << ".");
if(numVecs == 0) {
return; // done! nothing to do
}
const size_t numRows = this->blockRows_[blockIndex];
// The local operator works on a permuted subset of the local parts
// of X and Y. The subset and permutation are defined by the index
// array returned by getLocalRows(). If the permutation is trivial
// and the subset is exactly equal to the local indices, then we
// could use the local parts of X and Y exactly, without needing to
// permute. Otherwise, we have to use temporary storage to permute
// X and Y. For now, we always use temporary storage.
//
// Create temporary permuted versions of the input and output.
// (Re)allocate X_ and/or Y_ only if necessary. We'll use them to
// store the permuted versions of X resp. Y. Note that X_local has
// the domain Map of the operator, which may be a permuted subset of
// the local Map corresponding to X.getMap(). Similarly, Y_local
// has the range Map of the operator, which may be a permuted subset
// of the local Map corresponding to Y.getMap(). numRows_ here
// gives the number of rows in the row Map of the local operator.
//
// FIXME (mfh 20 Aug 2013) There might be an implicit assumption
// here that the row Map and the range Map of that operator are
// the same.
//
// FIXME (mfh 20 Aug 2013) This "local permutation" functionality
// really belongs in Tpetra.
if(X_local.size() == 0)
{
//create all X_local and Y_local managed Views at once, are
//reused in subsequent apply() calls
for(int i = 0; i < this->numBlocks_; i++)
{
X_local.emplace_back("", this->blockRows_[i], numVecs);
}
for(int i = 0; i < this->numBlocks_; i++)
{
Y_local.emplace_back("", this->blockRows_[i], numVecs);
}
}
ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
mvgs.gatherViewToView (X_local[blockIndex], X, localRows);
// We must gather the output multivector Y even on input to
// applyImpl(), since the local operator might use it as an initial
// guess for a linear solve. We have no way of knowing whether it
// does or does not.
mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);
// Apply the diagonal scaling D to the input X. It's our choice
// whether the result has the original input Map of X, or the
// permuted subset Map of X_local. If the latter, we also need to
// gather D into the permuted subset Map. We choose the latter, to
// save memory and computation. Thus, we do the following:
//
// 1. Gather D into a temporary vector D_local.
// 2. Create a temporary X_scaled to hold diag(D_local) * X_local.
// 3. Compute X_scaled := diag(D_loca) * X_local.
HostViewLocal D_local("", numRows, 1);
mvgs.gatherViewToView (D_local, D, localRows);
HostViewLocal X_scaled("", numRows, numVecs);
for(size_t j = 0; j < numVecs; j++)
for(size_t i = 0; i < numRows; i++)
X_scaled(i, j) = X_local[blockIndex](i, j) * D_local(i, 0);
// Y_temp will hold the result of M^{-1}*X_scaled. If beta == 0, we
// can write the result of Inverse_->apply() directly to Y_local, so
// Y_temp may alias Y_local. Otherwise, if beta != 0, we need
// temporary storage for M^{-1}*X_scaled, so Y_temp must be
// different than Y_local.
Ptr<HostViewLocal> Y_temp;
bool deleteYT = false;
if(beta == STS::zero())
{
Y_temp = ptr(&Y_local[blockIndex]);
} else {
Y_temp = ptr(new HostViewLocal("", numRows, numVecs));
deleteYT = true;
}
// Apply the local operator: Y_temp := M^{-1} * X_scaled
this->applyImpl (X_scaled, *Y_temp, blockIndex, stride, mode, STS::one(), STS::zero());
// Y_local := beta * Y_local + alpha * diag(D_local) * Y_temp.
//
// Note that we still use the permuted subset scaling D_local here,
// because Y_temp has the same permuted subset Map. That's good, in
// fact, because it's a subset: less data to read and multiply.
for(size_t j = 0; j < numVecs; j++)
for(size_t i = 0; i < numRows; i++)
Y_local[blockIndex](i, j) = Y_local[blockIndex](i, j) * (local_impl_scalar_type) beta + (local_impl_scalar_type) alpha * (*Y_temp)(i, j) * D_local(i, 0);
if(deleteYT)
delete Y_temp.get();
// Copy the permuted subset output vector Y_local into the original
// output multivector Y.
mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}
template<class MatrixType, class LocalScalarType>
std::ostream&
DenseContainer<MatrixType, LocalScalarType, true>::
print (std::ostream& os) const
{
Teuchos::FancyOStream fos (Teuchos::rcpFromRef (os));
fos.setOutputToRootOnly (0);
this->describe (fos);
return os;
}
template<class MatrixType, class LocalScalarType>
std::string
DenseContainer<MatrixType, LocalScalarType, true>::
description () const
{
std::ostringstream oss;
oss << "Ifpack::DenseContainer: ";
if (isInitialized()) {
if (isComputed()) {
oss << "{status = initialized, computed";
}
else {
oss << "{status = initialized, not computed";
}
}
else {
oss << "{status = not initialized, not computed";
}
oss << "}";
return oss.str();
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
describe (Teuchos::FancyOStream& os,
const Teuchos::EVerbosityLevel verbLevel) const
{
using std::endl;
if(verbLevel==Teuchos::VERB_NONE) return;
os << "================================================================================" << endl;
os << "Ifpack2::DenseContainer" << endl;
for(int i = 0; i < this->numBlocks_; i++)
{
os << "Block " << i << " number of rows = " << this->blockRows_[i] << endl;
}
os << "isInitialized() = " << IsInitialized_ << endl;
os << "isComputed() = " << IsComputed_ << endl;
os << "================================================================================" << endl;
os << endl;
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
extractBlockCrs ()
{
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::toString;
auto& A = this->inputMatrix_;
const size_t inputMatrixNumRows = A->getNodeNumRows();
// We only use the rank of the calling process and the number of MPI
// processes for generating error messages. Extraction itself is
// entirely local to each participating MPI process.
const int myRank = A->getRowMap ()->getComm ()->getRank ();
const int numProcs = A->getRowMap ()->getComm ()->getSize ();
// Sanity check that the local row indices to extract fall within
// the valid range of local row indices for the input matrix.
for(int i = 0; i < this->numBlocks_; ++i) {
ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
for(local_ordinal_type j = 0; j < this->blockRows_[i]; ++j) {
TEUCHOS_TEST_FOR_EXCEPTION(
localRows[j] < 0 ||
static_cast<size_t>(localRows[j]) >= inputMatrixNumRows,
std::runtime_error, "Ifpack2::DenseContainer::extract: On process " <<
myRank << " of " << numProcs << ", localRows[j=" << j << "] = " <<
localRows[j] << ", which is out of the valid range of local row indices "
"indices [0, " << (inputMatrixNumRows - 1) << "] for the input matrix.");
}
}
// Convert the local row indices we want into local column indices.
// For every local row ii_local = localRows[i] we take, we also want
// to take the corresponding column. To find the corresponding
// column, we use the row Map to convert the local row index
// ii_local into a global index ii_global, and then use the column
// Map to convert ii_global into a local column index jj_local. If
// the input matrix doesn't have a column Map, we need to be using
// global indices anyway...
// We use the domain Map to exclude off-process global entries.
auto globalRowMap = A->getRowMap ();
auto globalColMap = A->getColMap ();
auto globalDomMap = A->getDomainMap ();
for(int blockIndex = 0; blockIndex < this->numBlocks_; blockIndex++)
{
const local_ordinal_type numRows_ = this->blockRows_[blockIndex];
Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
bool rowIndsValid = true;
bool colIndsValid = true;
Array<local_ordinal_type> localCols(numRows_);
// For error messages, collect the sets of invalid row indices and
// invalid column indices. They are otherwise not useful.
Array<local_ordinal_type> invalidLocalRowInds;
Array<global_ordinal_type> invalidGlobalColInds;
for (local_ordinal_type i = 0; i < numRows_; i++)
{
// ii_local is the (local) row index we want to look up.
const local_ordinal_type ii_local = localRows[i];
// Find the global index jj_global corresponding to ii_local.
// Global indices are the same (rather, are required to be the
// same) in all three Maps, which is why we use jj (suggesting a
// column index, which is how we will use it below).
const global_ordinal_type jj_global = globalRowMap->getGlobalElement(ii_local);
if(jj_global == Teuchos::OrdinalTraits<global_ordinal_type>::invalid())
{
// If ii_local is not a local index in the row Map on the
// calling process, that means localRows is incorrect. We've
// already checked for this in the constructor, but we might as
// well check again here, since it's cheap to do so (just an
// integer comparison, since we need jj_global anyway).
rowIndsValid = false;
invalidLocalRowInds.push_back(ii_local);
break;
}
// Exclude "off-process" entries: that is, those in the column Map
// on this process that are not in the domain Map on this process.
if(globalDomMap->isNodeGlobalElement(jj_global))
{
// jj_global is not an off-process entry. Look up its local
// index in the column Map; we want to extract this column index
// from the input matrix. If jj_global is _not_ in the column
// Map on the calling process, that could mean that the column
// in question is empty on this process. That would be bad for
// solving linear systems with the extract submatrix. We could
// solve the resulting singular linear systems in a minimum-norm
// least-squares sense, but for now we simply raise an exception.
const local_ordinal_type jj_local = globalColMap->getLocalElement(jj_global);
if(jj_local == Teuchos::OrdinalTraits<local_ordinal_type>::invalid())
{
colIndsValid = false;
invalidGlobalColInds.push_back(jj_global);
break;
}
localCols[i] = jj_local;
}
}
TEUCHOS_TEST_FOR_EXCEPTION(
!rowIndsValid, std::logic_error, "Ifpack2::DenseContainer::extract: "
"On process " << myRank << ", at least one row index in the set of local "
"row indices given to the constructor is not a valid local row index in "
"the input matrix's row Map on this process. This should be impossible "
"because the constructor checks for this case. Here is the complete set "
"of invalid local row indices: " << toString(invalidLocalRowInds) << ". "
"Please report this bug to the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
!colIndsValid, std::runtime_error, "Ifpack2::DenseContainer::extract: "
"On process " << myRank << ", "
"At least one row index in the set of row indices given to the constructor "
"does not have a corresponding column index in the input matrix's column "
"Map. This probably means that the column(s) in question is/are empty on "
"this process, which would make the submatrix to extract structurally "
"singular. Here is the compete set of invalid global column indices: "
<< toString(invalidGlobalColInds) << ".");
diagBlocks_[blockIndex].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
const size_t maxNumEntriesInRow = A->getNodeMaxNumRowEntries();
Array<local_ordinal_type> ind(maxNumEntriesInRow);
const local_ordinal_type INVALID = Teuchos::OrdinalTraits<local_ordinal_type>::invalid();
Array<scalar_type> val(maxNumEntriesInRow * this->bcrsBlockSize_ * this->bcrsBlockSize_);
for(local_ordinal_type i = 0; i < numRows_; i++)
{
const local_ordinal_type localRow = localRows[i];
size_t numEntries;
A->getLocalRowCopy(localRow, ind(), val(), numEntries);
for(size_t k = 0; k < numEntries; k++)
{
const local_ordinal_type localCol = ind[k];
// Skip off-process elements
//
// FIXME (mfh 24 Aug 2013) This assumes the following:
//
// 1. The column and row Maps begin with the same set of
// on-process entries, in the same order. That is,
// on-process row and column indices are the same.
// 2. All off-process indices in the column Map of the input
// matrix occur after that initial set.
if(localCol >= 0 && static_cast<size_t> (localCol) < inputMatrixNumRows)
{
// for local column IDs, look for each ID in the list
// of columns hosted by this object
local_ordinal_type jj = INVALID;
for(local_ordinal_type kk = 0; kk < numRows_; kk++)
{
if(localRows[kk] == localCol)
jj = kk;
}
if(jj != INVALID)
{
// copy entire diagonal block
for(local_ordinal_type c = 0; c < this->bcrsBlockSize_; c++)
{
for(local_ordinal_type r = 0; r < this->bcrsBlockSize_; r++)
diagBlocks_[blockIndex](this->bcrsBlockSize_ * i + r,
this->bcrsBlockSize_ * jj + c)
= val[k * (this->bcrsBlockSize_ * this->bcrsBlockSize_)
+ (r + this->bcrsBlockSize_ * c)];
}
}
}
}
}
}
}
template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
extract ()
{
using Teuchos::Array;
using Teuchos::ArrayView;
using Teuchos::toString;
auto& A = *this->inputMatrix_;
const size_t inputMatrixNumRows = A.getNodeNumRows();
// We only use the rank of the calling process and the number of MPI
// processes for generating error messages. Extraction itself is
// entirely local to each participating MPI process.
const int myRank = A.getRowMap ()->getComm ()->getRank ();
const int numProcs = A.getRowMap ()->getComm ()->getSize ();
for(int blockIndex = 0; blockIndex < this->numBlocks_; blockIndex++)
{
local_ordinal_type numRows_ = this->blockRows_[blockIndex];
// If this is a block CRS matrix, call the appropriate function
if(this->hasBlockCrs_)
{
extractBlockCrs();
return;
}
// Sanity check that the local row indices to extract fall within
// the valid range of local row indices for the input matrix.
ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
for(local_ordinal_type j = 0; j < numRows_; j++)
{
TEUCHOS_TEST_FOR_EXCEPTION(
localRows[j] < 0 ||
static_cast<size_t> (localRows[j]) >= inputMatrixNumRows,
std::runtime_error, "Ifpack2::DenseContainer::extract: On process " <<
myRank << " of " << numProcs << ", localRows[j=" << j << "] = " <<
localRows[j] << ", which is out of the valid range of local row indices "
"indices [0, " << (inputMatrixNumRows - 1) << "] for the input matrix.");
}
// Convert the local row indices we want into local column indices.
// For every local row ii_local = localRows[i] we take, we also want
// to take the corresponding column. To find the corresponding
// column, we use the row Map to convert the local row index
// ii_local into a global index ii_global, and then use the column
// Map to convert ii_global into a local column index jj_local. If
// the input matrix doesn't have a column Map, we need to be using
// global indices anyway...
// We use the domain Map to exclude off-process global entries.
const map_type& globalRowMap = * (A.getRowMap ());
const map_type& globalColMap = * (A.getColMap ());
const map_type& globalDomMap = * (A.getDomainMap ());
bool rowIndsValid = true;
bool colIndsValid = true;
Array<local_ordinal_type> localCols(numRows_);
// For error messages, collect the sets of invalid row indices and
// invalid column indices. They are otherwise not useful.
Array<local_ordinal_type> invalidLocalRowInds;
Array<global_ordinal_type> invalidGlobalColInds;
for(local_ordinal_type i = 0; i < numRows_; i++)
{
// ii_local is the (local) row index we want to look up.
const local_ordinal_type ii_local = localRows[i];
// Find the global index jj_global corresponding to ii_local.
// Global indices are the same (rather, are required to be the
// same) in all three Maps, which is why we use jj (suggesting a
// column index, which is how we will use it below).
const global_ordinal_type jj_global = globalRowMap.getGlobalElement(ii_local);
if(jj_global == Teuchos::OrdinalTraits<global_ordinal_type>::invalid())
{
// If ii_local is not a local index in the row Map on the
// calling process, that means localRows is incorrect. We've
// already checked for this in the constructor, but we might as
// well check again here, since it's cheap to do so (just an
// integer comparison, since we need jj_global anyway).
rowIndsValid = false;
invalidLocalRowInds.push_back(ii_local);
break;
}
// Exclude "off-process" entries: that is, those in the column Map
// on this process that are not in the domain Map on this process.
if(globalDomMap.isNodeGlobalElement(jj_global))
{
// jj_global is not an off-process entry. Look up its local
// index in the column Map; we want to extract this column index
// from the input matrix. If jj_global is _not_ in the column
// Map on the calling process, that could mean that the column
// in question is empty on this process. That would be bad for
// solving linear systems with the extract submatrix. We could
// solve the resulting singular linear systems in a minimum-norm
// least-squares sense, but for now we simply raise an exception.
const local_ordinal_type jj_local = globalColMap.getLocalElement(jj_global);
if(jj_local == Teuchos::OrdinalTraits<local_ordinal_type>::invalid())
{
colIndsValid = false;
invalidGlobalColInds.push_back(jj_global);
break;
}
localCols[i] = jj_local;
}
}
TEUCHOS_TEST_FOR_EXCEPTION(
!rowIndsValid, std::logic_error, "Ifpack2::DenseContainer::extract: "
"On process " << myRank << ", at least one row index in the set of local "
"row indices given to the constructor is not a valid local row index in "
"the input matrix's row Map on this process. This should be impossible "
"because the constructor checks for this case. Here is the complete set "
"of invalid local row indices: " << toString(invalidLocalRowInds) << ". "
"Please report this bug to the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
!colIndsValid, std::runtime_error, "Ifpack2::DenseContainer::extract: "
"On process " << myRank << ", "
"At least one row index in the set of row indices given to the constructor "
"does not have a corresponding column index in the input matrix's column "
"Map. This probably means that the column(s) in question is/are empty on "
"this process, which would make the submatrix to extract structurally "
"singular. Here is the compete set of invalid global column indices: "
<< toString(invalidGlobalColInds) << ".");
diagBlocks_[blockIndex].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
const size_t maxNumEntriesInRow = A.getNodeMaxNumRowEntries();
Array<local_ordinal_type> ind(maxNumEntriesInRow);
const local_ordinal_type INVALID = Teuchos::OrdinalTraits<local_ordinal_type>::invalid();
Array<scalar_type> val(maxNumEntriesInRow);
for (local_ordinal_type i = 0; i < numRows_; i++)
{
const local_ordinal_type localRow = localRows[i];
size_t numEntries;
A.getLocalRowCopy(localRow, ind(), val(), numEntries);
for (size_t k = 0; k < numEntries; ++k)
{
const local_ordinal_type localCol = ind[k];
// Skip off-process elements
//
// FIXME (mfh 24 Aug 2013) This assumes the following:
//
// 1. The column and row Maps begin with the same set of
// on-process entries, in the same order. That is,
// on-process row and column indices are the same.
// 2. All off-process indices in the column Map of the input
// matrix occur after that initial set.
if(localCol >= 0 && static_cast<size_t> (localCol) < inputMatrixNumRows)
{
// for local column IDs, look for each ID in the list
// of columns hosted by this object
local_ordinal_type jj = INVALID;
for(local_ordinal_type kk = 0; kk < numRows_; kk++)
{
if(localRows[kk] == localCol)
jj = kk;
}
if(jj != INVALID)
diagBlocks_[blockIndex](i, jj) += val[k]; // ???
}
}
}
}
}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, true>::clearBlocks()
{
std::vector<Teuchos::SerialDenseMatrix<int, local_scalar_type>> empty1;
std::swap(diagBlocks_, empty1);
Teuchos::Array<int> empty2;
Teuchos::swap(ipiv_, empty2);
std::vector<HostViewLocal> empty3;
std::swap(X_local, empty3);
std::vector<HostViewLocal> empty4;
std::swap(Y_local, empty4);
Container<MatrixType>::clearBlocks();
}
template<class MatrixType, class LocalScalarType>
std::string DenseContainer<MatrixType, LocalScalarType, true>::getName()
{
return "Dense";
}
template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, false>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
const Teuchos::RCP<const import_type>& importer,
int OverlapLevel,
scalar_type DampingFactor) :
Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
DampingFactor)
{
TEUCHOS_TEST_FOR_EXCEPTION
(true, std::logic_error, "Ifpack2::DenseContainer: Not implemented for "
"LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
<< ".");
}
template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, false>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<local_ordinal_type>& localRows) :
Container<MatrixType>(matrix, localRows)
{
TEUCHOS_TEST_FOR_EXCEPTION
(true, std::logic_error, "Ifpack2::DenseContainer: Not implemented for "
"LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
<< ".");
}
template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, false>::~DenseContainer() {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
setParameters (const Teuchos::ParameterList& /* List */) {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::initialize() {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::compute() {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::factor() {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
applyImplBlockCrs (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
local_scalar_type alpha,
local_scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
applyImpl (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
local_scalar_type alpha,
local_scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
applyBlockCrs (HostView& XIn,
HostView& YIn,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
apply (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
weightedApply (HostView& X,
HostView& Y,
HostView& D,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const {}
template<class MatrixType, class LocalScalarType>
std::ostream& DenseContainer<MatrixType, LocalScalarType, false>::
print (std::ostream& os) const
{
return os;
}
template<class MatrixType, class LocalScalarType>
std::string DenseContainer<MatrixType, LocalScalarType, false>::
description () const
{
return "";
}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
describe (Teuchos::FancyOStream& os,
const Teuchos::EVerbosityLevel verbLevel) const {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
extractBlockCrs () {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
extract () {}
template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::clearBlocks() {}
template<class MatrixType, class LocalScalarType>
std::string DenseContainer<MatrixType, LocalScalarType, false>::getName()
{
return "";
}
} // namespace Ifpack2
// There's no need to instantiate for CrsMatrix too. All Ifpack2
// preconditioners can and should do dynamic casts if they need a type
// more specific than RowMatrix.
#define IFPACK2_DENSECONTAINER_INSTANT(S,LO,GO,N) \
template class Ifpack2::DenseContainer< Tpetra::RowMatrix<S, LO, GO, N>, S >;
#endif // IFPACK2_DENSECONTAINER_DEF_HPP
|