/usr/include/trilinos/Ifpack2_DenseContainer_decl.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_DENSECONTAINER_DECL_HPP
#define IFPACK2_DENSECONTAINER_DECL_HPP
/// \file Ifpack2_DenseContainer_decl.hpp
/// \brief Ifpack2::DenseContainer class declaration
#include "Ifpack2_Container.hpp"
#include "Ifpack2_Details_MultiVectorLocalGatherScatter.hpp"
#include "Ifpack2_Details_LapackSupportsScalar.hpp"
#include "Tpetra_MultiVector.hpp"
#include "Tpetra_Map.hpp"
#include "Tpetra_RowMatrix.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Tpetra_Experimental_BlockCrsMatrix_decl.hpp"
namespace Ifpack2 {
/// \class DenseContainer
/// \brief Store and solve a local dense linear problem.
/// \tparam MatrixType A specialization of Tpetra::RowMatrix.
///
/// Please refer to the documentation of the Container
/// interface. Currently, Containers are used by BlockRelaxation.
/// Block relaxations need to be able to do two things:
/// <ol>
/// <li> Store the diagonal blocks </li>
/// <li> Solve linear systems with each diagonal block </li>
/// </ol>
/// DenseContainer stores the diagonal blocks as dense matrices, and
/// solves them using either LAPACK (for the four Scalar types that it
/// supports) or a custom LU factorization (for Scalar types not
/// supported by LAPACK).
///
/// As with Ifpack2::Container, \c MatrixType must be a specialization
/// of Tpetra::RowMatrix. Using a dense matrix for each block is a
/// good idea when the blocks are small. For large and / or sparse
/// blocks, it would probably be better to use an implementation of
/// Container that stores the blocks sparsely, in particular
/// SparseContainer.
///
/// This class may store the dense local matrix using values of a
/// different type (\c LocalScalarType) than those in \c MatrixType.
/// You may mix and match so long as implicit conversions are
/// available between \c LocalScalarType and
/// <tt>MatrixType::scalar_type</tt>.
///
/// This class currently assumes the following about the column and
/// row Maps of the input matrix:
/// <ol>
/// <li> On all processes, the column and row Maps begin with the same
/// set of on-process entries, in the same order. That is,
/// on-process row and column indices are the same.</li>
/// <li> On all processes, all off-process indices in the column Map
/// of the input matrix occur after that initial set.</li>
/// </ol>
/// These assumptions may be violated if the input matrix is a
/// Tpetra::CrsMatrix that was constructed with a user-provided column
/// Map. The assumptions are not mathematically necessary and could
/// be relaxed at any time. Implementers who wish to do so will need
/// to modify the extract() method, so that it translates explicitly
/// between local row and column indices, instead of just assuming
/// that they are the same.
template<class MatrixType, class LocalScalarType,
bool lapackSupportsScalar = ::Ifpack2::Details::LapackSupportsScalar<LocalScalarType>::value>
class DenseContainer;
template<class MatrixType, class LocalScalarType>
class DenseContainer<MatrixType, LocalScalarType, true> :
public Container<MatrixType> {
//! @name Internal typedefs (private)
//@{
private:
/// \brief The first template parameter of this class.
///
/// This must be either a Tpetra::RowMatrix specialization or a
/// Tpetra::CrsMatrix specialization. It may have entirely
/// different template parameters (e.g., \c scalar_type) than
/// <tt>InverseType</tt>.
typedef MatrixType matrix_type;
//! The second template parameter of this class.
typedef LocalScalarType local_scalar_type;
//! The internal representation of LocalScalarType in Kokkos::View
typedef typename Kokkos::Details::ArithTraits<local_scalar_type>::val_type local_impl_scalar_type;
//! The type of entries in the input (global) matrix.
typedef typename Container<MatrixType>::scalar_type scalar_type;
//! The type of local indices in the input matrix.
typedef typename Container<MatrixType>::local_ordinal_type local_ordinal_type;
//! The type of global indices in the input matrix.
typedef typename Container<MatrixType>::global_ordinal_type global_ordinal_type;
//! The Node type of the input matrix.
typedef typename Container<MatrixType>::node_type node_type;
typedef typename Container<MatrixType>::mv_type mv_type;
typedef Tpetra::MultiVector<local_scalar_type, local_ordinal_type, global_ordinal_type, node_type> local_mv_type;
typedef Tpetra::Vector<local_scalar_type, local_ordinal_type, global_ordinal_type, node_type> local_vector_type;
typedef typename Container<MatrixType>::map_type map_type;
typedef typename Container<MatrixType>::vector_type vector_type;
typedef typename Container<MatrixType>::partitioner_type partitioner_type;
typedef typename Container<MatrixType>::import_type import_type;
typedef typename Container<MatrixType>::HostView HostView;
typedef typename local_mv_type::dual_view_type::t_host HostViewLocal;
static_assert(std::is_same<MatrixType, Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type>>::value,
"Ifpack2::DenseContainer: Please use MatrixType = Tpetra::RowMatrix.");
/// \brief The (base class) type of the input matrix.
///
/// The input matrix to the constructor may be either a
/// Tpetra::RowMatrix specialization or a Tpetra::CrsMatrix
/// specialization. However, we want to make the constructor as
/// general as possible, so we always accept the matrix as a
/// Tpetra::RowMatrix. This typedef is the appropriate
/// specialization of Tpetra::RowMatrix.
typedef typename Container<MatrixType>::row_matrix_type row_matrix_type;
typedef Tpetra::Experimental::BlockCrsMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> block_crs_matrix_type;
//@}
public:
//! \name Constructor and destructor
//@{
/// \brief Constructor.
///
/// \brief matrix [in] The original input matrix. This Container
/// will construct a local diagonal block from the rows given by
/// <tt>localRows</tt>.
///
/// \param localRows [in] The set of (local) rows assigned to this
/// container. <tt>localRows[i] == j</tt>, where i (from 0 to
/// <tt>getNumRows() - 1</tt>) indicates the SparseContainer's
/// row, and j indicates the local row in the calling process.
/// <tt>localRows.size()</tt> gives the number of rows in the
/// local matrix on each process. This may be different on
/// different processes.
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
const Teuchos::RCP<const import_type>& importer,
int OverlapLevel,
scalar_type DampingFactor);
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<local_ordinal_type>& localRows);
//! Destructor (declared virtual for memory safety of derived classes).
virtual ~DenseContainer ();
//@}
//! \name Get and set methods
//@{
//! Whether the container has been successfully initialized.
virtual bool isInitialized () const {
return IsInitialized_;
}
//! Whether the container has been successfully computed.
virtual bool isComputed () const {
return IsComputed_;
}
//! Set all necessary parameters.
virtual void setParameters(const Teuchos::ParameterList& List);
//@}
//! \name Mathematical functions
//@{
//! Do all set-up operations that only require matrix structure.
virtual void initialize ();
//! Extract the local diagonal block and prepare the solver.
virtual void compute ();
//! Compute <tt>Y := alpha * M^{-1} X + beta*Y</tt>.
virtual void
applyBlockCrs (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;
//! Compute <tt>Y := alpha * M^{-1} X + beta*Y</tt>.
virtual void
apply (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;
//! Compute <tt>Y := alpha * diag(D) * M^{-1} (diag(D) * X) + beta*Y</tt>.
virtual void
weightedApply (HostView& X,
HostView& Y,
HostView& W,
int blockIndex,
int stride,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;
void clearBlocks();
//@}
//! \name Miscellaneous methods
//@{
/// \brief Print information about this object to the given output stream.
///
/// operator<< uses this method.
virtual std::ostream& print (std::ostream& os) const;
//@}
//! @name Implementation of Teuchos::Describable
//@{
//! A one-line description of this object.
virtual std::string description () const;
//! Print the object with some verbosity level to the given FancyOStream.
virtual void
describe (Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel =
Teuchos::Describable::verbLevel_default) const;
//@}
/// \brief Get the name of this container type for Details::constructContainer()
static std::string getName();
private:
//! Copy constructor: Declared but not implemented, to forbid copy construction.
DenseContainer (const DenseContainer<MatrixType, LocalScalarType>& rhs);
//! Extract the submatrix identified by the local indices set by the constructor.
void extractBlockCrs ();
//! Extract the submatrix identified by the local indices set by the constructor.
void extract ();
/// \brief Factor the extracted submatrix.
///
/// Call this after calling extract().
void factor ();
/// \brief Post-permutation, post-view version of apply().
///
/// apply() first does any necessary subset permutation and view
/// creation (or copying data), then calls this method to solve the
/// linear system with the diagonal block.
///
/// \param X [in] Subset permutation of the input X of apply().
/// \param Y [in] Subset permutation of the input/output Y of apply().
void
applyImpl (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
const local_scalar_type alpha,
const local_scalar_type beta) const;
void
applyImplBlockCrs (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
const local_scalar_type alpha,
const local_scalar_type beta) const;
//! The local diagonal blocks, which compute() extracts.
std::vector<Teuchos::SerialDenseMatrix<int, local_scalar_type>> diagBlocks_;
//! Temporary X vector used in apply().
mutable std::vector<HostViewLocal> X_local;
//! Temporary Y vector used in apply().
mutable std::vector<HostViewLocal> Y_local;
//! Permutation array from LAPACK (GETRF).
Teuchos::Array<int> ipiv_;
//! If \c true, the container has been successfully initialized.
bool IsInitialized_;
//! If \c true, the container has been successfully computed.
bool IsComputed_;
//! True if the input matrix type is a <tt>BlockCrsMatrix</tt>, false otherwise.
bool hasBlockCrsMatrix_;
//! Scalar array for all of the <tt>diagBlocks_</tt>.
local_scalar_type* scalars_;
//! The indices in \c scalars_ where each block matrix starts.
Teuchos::Array<global_ordinal_type> scalarOffsets_;
};
template<class MatrixType, class LocalScalarType>
class DenseContainer<MatrixType, LocalScalarType, false> :
public Container<MatrixType> {
//! @name Internal typedefs (private)
//@{
private:
/// \brief The first template parameter of this class.
///
/// This must be either a Tpetra::RowMatrix specialization or a
/// Tpetra::CrsMatrix specialization. It may have entirely
/// different template parameters (e.g., \c scalar_type) than
/// <tt>InverseType</tt>.
typedef MatrixType matrix_type;
//! The second template parameter of this class.
typedef LocalScalarType local_scalar_type;
//! The internal representation of LocalScalarType in Kokkos::View
typedef typename Kokkos::Details::ArithTraits<local_scalar_type>::val_type local_impl_scalar_type;
//! The type of entries in the input (global) matrix.
typedef typename Container<MatrixType>::scalar_type scalar_type;
//! The type of local indices in the input matrix.
typedef typename Container<MatrixType>::local_ordinal_type local_ordinal_type;
//! The type of global indices in the input matrix.
typedef typename Container<MatrixType>::global_ordinal_type global_ordinal_type;
//! The Node type of the input matrix.
typedef typename Container<MatrixType>::node_type node_type;
typedef typename Container<MatrixType>::mv_type mv_type;
typedef Tpetra::MultiVector<local_scalar_type, local_ordinal_type, global_ordinal_type, node_type> local_mv_type;
typedef Tpetra::Vector<local_scalar_type, local_ordinal_type, global_ordinal_type, node_type> local_vector_type;
typedef typename Container<MatrixType>::map_type map_type;
typedef typename Container<MatrixType>::vector_type vector_type;
typedef typename Container<MatrixType>::partitioner_type partitioner_type;
typedef typename Container<MatrixType>::import_type import_type;
typedef typename Container<MatrixType>::HostView HostView;
typedef typename local_mv_type::dual_view_type::t_host HostViewLocal;
static_assert(std::is_same<MatrixType, Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type>>::value,
"Ifpack2::DenseContainer: Please use MatrixType = Tpetra::RowMatrix.");
/// \brief The (base class) type of the input matrix.
///
/// The input matrix to the constructor may be either a
/// Tpetra::RowMatrix specialization or a Tpetra::CrsMatrix
/// specialization. However, we want to make the constructor as
/// general as possible, so we always accept the matrix as a
/// Tpetra::RowMatrix. This typedef is the appropriate
/// specialization of Tpetra::RowMatrix.
typedef typename Container<MatrixType>::row_matrix_type row_matrix_type;
typedef Tpetra::Experimental::BlockCrsMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> block_crs_matrix_type;
//@}
public:
//! \name Constructor and destructor
//@{
/// \brief Constructor.
///
/// \brief matrix [in] The original input matrix. This Container
/// will construct a local diagonal block from the rows given by
/// <tt>localRows</tt>.
///
/// \param localRows [in] The set of (local) rows assigned to this
/// container. <tt>localRows[i] == j</tt>, where i (from 0 to
/// <tt>getNumRows() - 1</tt>) indicates the SparseContainer's
/// row, and j indicates the local row in the calling process.
/// <tt>localRows.size()</tt> gives the number of rows in the
/// local matrix on each process. This may be different on
/// different processes.
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
const Teuchos::RCP<const import_type>& importer,
int OverlapLevel,
scalar_type DampingFactor);
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<local_ordinal_type>& localRows);
//! Destructor (declared virtual for memory safety of derived classes).
virtual ~DenseContainer ();
//@}
//! \name Get and set methods
//@{
//! Whether the container has been successfully initialized.
virtual bool isInitialized () const {
return IsInitialized_;
}
//! Whether the container has been successfully computed.
virtual bool isComputed () const {
return IsComputed_;
}
//! Set all necessary parameters.
virtual void setParameters(const Teuchos::ParameterList& List);
//@}
//! \name Mathematical functions
//@{
//! Do all set-up operations that only require matrix structure.
virtual void initialize ();
//! Extract the local diagonal block and prepare the solver.
virtual void compute ();
//! Compute <tt>Y := alpha * M^{-1} X + beta*Y</tt>.
virtual void
applyBlockCrs (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;
//! Compute <tt>Y := alpha * M^{-1} X + beta*Y</tt>.
virtual void
apply (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;
//! Compute <tt>Y := alpha * diag(D) * M^{-1} (diag(D) * X) + beta*Y</tt>.
virtual void
weightedApply (HostView& X,
HostView& Y,
HostView& W,
int blockIndex,
int stride,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;
void clearBlocks();
//@}
//! \name Miscellaneous methods
//@{
/// \brief Print information about this object to the given output stream.
///
/// operator<< uses this method.
virtual std::ostream& print (std::ostream& os) const;
//@}
//! @name Implementation of Teuchos::Describable
//@{
//! A one-line description of this object.
virtual std::string description () const;
//! Print the object with some verbosity level to the given FancyOStream.
virtual void
describe (Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel =
Teuchos::Describable::verbLevel_default) const;
//@}
/// \brief Get the name of this container type for Details::constructContainer()
static std::string getName();
private:
//! Copy constructor: Declared but not implemented, to forbid copy construction.
DenseContainer (const DenseContainer<MatrixType, LocalScalarType>& rhs);
//! Extract the submatrix identified by the local indices set by the constructor.
void extractBlockCrs ();
//! Extract the submatrix identified by the local indices set by the constructor.
void extract ();
/// \brief Factor the extracted submatrix.
///
/// Call this after calling extract().
void factor ();
/// \brief Post-permutation, post-view version of apply().
///
/// apply() first does any necessary subset permutation and view
/// creation (or copying data), then calls this method to solve the
/// linear system with the diagonal block.
///
/// \param X [in] Subset permutation of the input X of apply().
/// \param Y [in] Subset permutation of the input/output Y of apply().
void
applyImpl (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
const local_scalar_type alpha,
const local_scalar_type beta) const;
void
applyImplBlockCrs (HostViewLocal& X,
HostViewLocal& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
const local_scalar_type alpha,
const local_scalar_type beta) const;
//! The local diagonal blocks, which compute() extracts.
std::vector<Teuchos::SerialDenseMatrix<int, local_scalar_type>> diagBlocks_;
//! Temporary X vector used in apply().
mutable std::vector<HostViewLocal> X_local;
//! Temporary Y vector used in apply().
mutable std::vector<HostViewLocal> Y_local;
//! Permutation array from LAPACK (GETRF).
Teuchos::Array<int> ipiv_;
//! If \c true, the container has been successfully initialized.
bool IsInitialized_;
//! If \c true, the container has been successfully computed.
bool IsComputed_;
//! True if the input matrix type is a <tt>BlockCrsMatrix</tt>, false otherwise.
bool hasBlockCrsMatrix_;
//! Scalar array for all of the <tt>diagBlocks_</tt>.
local_scalar_type* scalars_;
//! The indices in \c scalars_ where each block matrix starts.
Teuchos::Array<global_ordinal_type> scalarOffsets_;
};
} // namespace Ifpack2
#endif // IFPACK2_DENSECONTAINER_DECL_HPP
|