This file is indexed.

/usr/include/trilinos/Ifpack2_Chebyshev_decl.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/*
@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

/// \file Ifpack2_Chebyshev_decl.hpp
/// \brief Declaration of Chebyshev interface
///
/// This file declares the user-facing interface.
/// Ifpack2_Details_Chebyshev_decl.hpp declares the
/// <i>implementation</i> of this interface.

#ifndef IFPACK2_CHEBYSHEV_DECL_HPP
#define IFPACK2_CHEBYSHEV_DECL_HPP

#include "Ifpack2_Preconditioner.hpp"
#include "Ifpack2_Details_CanChangeMatrix.hpp"

// FIXME (mfh 20 Nov 2013) We really shouldn't have to include this.
// We should handle the implementation by pointer instead of by value.
#include "Ifpack2_Details_Chebyshev.hpp"

// We only need the declaration here, and only for the method
// getCrsMatrix.  I would very much prefer that this method not exist.
// Furthermore, it is both unsafe (MatrixType need not be CrsMatrix)
// and completely redundant (just call getMatrix() and do the
// dynamic_cast yourself).
#include "Tpetra_CrsMatrix_decl.hpp"

#include <type_traits>

namespace Ifpack2 {

/// \class Chebyshev
/// \brief Diagonally scaled Chebyshev iteration for Tpetra sparse matrices.
/// \tparam MatrixType A specialization of Tpetra::RowMatrix.
///
/// \section Ifpack_Chebyshev_Summary Summary
///
/// This class implements a Chebyshev polynomial preconditioner or
/// smoother for a Tpetra sparse matrix.  Given a matrix A, it applies
/// Chebyshev iteration to the left-scaled matrix \f$D^{-1} A\f$,
/// where D = diag(A) is the matrix of the diagonal entries of A.
/// This class' constructor accepts a Tpetra::RowMatrix or any
/// subclass thereof (including Tpetra::CrsMatrix).  Its template
/// parameter may be a specialization of either class.
///
/// Chebyshev is derived from Preconditioner, which itself is derived
/// from Tpetra::Operator.  Therefore, a Chebyshev instance may be
/// used as an operator in any code that invokes the operator as
/// apply().
///
/// \warning Our implementation currently <i>only</i> works with a
///   real symmetric positive definite (SPD) matrix.  Results for
///   matrices that are not SPD, or for complex-valued Scalar types,
///   are not defined.
///
/// \section Ifpack_Chebyshev_Algorithm Algorithm
///
/// Given a matrix A, a right-hand side X, and an initial guess Y,
/// this class computes an approximate solution to \f$AY=X\f$ via
/// Chebyshev iteration using the left-scaled matrix \f$D^{-1} A\f$,
/// where D is the matrix of the diagonal elements of A.  (You may
/// control left scaling yourself if you wish, by providing an
/// optional vector of the entries of \f$D^{-1}\f$.)  While Chebyshev
/// iteration works for any matrix, we have chosen only to allow
/// real-valued, symmetric positive definite matrices.
///
/// Chebyshev iteration was originally intended as an iterative solver
/// for linear systems.  See the following publication (the spelling
/// of "Chebyshev" in Latin characters differs in some publications):
///
/// T. Manteuffel, "The Tchebychev iteration for nonsymmetric linear
/// systems," Numer. Math., 28 (1977), pp. 307-327.
///
/// It also works as a smoother for algebraic multigrid, which is the
/// target use case of this implementation.
///
/// \section Ifpack_Chebyshev_Eig Eigenvalue bounds
///
/// We require that the input matrix A be real-valued and symmetric
/// positive definite.  Thus, all of its eigenvalues must lie in a
/// positive interval on the real line.  Furthermore, if D is the
/// matrix of the diagonal elements of A, then the same is true of
/// \f$D^{-1} A\f$.
///
/// Suppose \f$[\lambda_{min}, \lambda_{max}]\f$ is the interval of
/// the eigenvalues of \f$D^{-1} A\f$.  Users may either give us an
/// estimate of the maximum eigenvalue \f$\lambda_{max}\f$, or let us
/// compute it (which we do with a few power iterations).  They may
/// optionally also give us the (estimated) ratio \f$\eta =
/// \lambda_{max} / \lambda_{min}\f$, or (an estimate of) the minimum
/// eigenvalue \f$\lambda_{min}\f$.  The \f$\eta\f$ parameter
/// corresponds to the "smoother: Chebyshev alpha" parameter of ML.
/// (We use "eta" instead of "alpha" to avoid confusion with the
/// "alpha" argument of the apply() method of Tpetra::Operator.)
///
/// When using Chebyshev iteration by itself to solve linear systems,
/// it is important to have good estimates of both the minimum and
/// maximum eigenvalues.  However, when using a small number of
/// Chebyshev iterations as a smoother in multigrid, the maximum
/// eigenvalue estimate is more important.  (The point of a smoother
/// is to smooth out the high-frequency components of the error, that
/// is, those that correspond to the largest eigenvalues.  The coarser
/// grids below the current grid will take care of the lower-frequency
/// components of the error.)  This is why we use a ratio
/// \f$\eta = \lambda_{max} / \lambda_{min}\f$, rather than requiring a guess for
/// \f$\lambda_{min}\f$. In fact, we only use \f$\lambda_{min}\f$ for
/// error checking, not when determining the Chebyshev coefficients.
/// Often, if users give us \f$\lambda_{max}\f$, our default value of
/// \f$\eta\f$ suffices.
///
/// Underestimating \f$\lambda_{min}\f$ may make Chebyshev fail to
/// converge, or fail to reduce the highest-frequency components of
/// the error, if used as a smoother.  Thus, we always multiply the
/// given \f$\lambda_{min}\f$ by a small factor (1.1).  This heuristic
/// accounts for the fact that typical methods for estimating extremal
/// eigenvalues (like Lanczos or CG) underestimate them.
///
/// If you do not give us an estimate for the maximum eigenvalue, we
/// estimate it using a few iterations of the power method in the
/// compute() method.  We do not attempt to refine the eigenvalue
/// bounds over Chebyshev iterations, as the typical smoother case
/// does not use very many iterations.  For an example of a Chebyshev
/// implementation that updates eigenvalue bound estimates, see Steve
/// Ashby's CHEBYCODE:
///
/// S. ASHBY, "CHEBYCODE: A Fortran implementation of Manteuffel's
/// adaptive Chebyshev algorithm," Tech. Rep. UIUCDCS-R-85-1203,
/// University of Illinois, 1985.
///
/// \section Ifpack_Chebyshev_Params Setting parameters
///
/// Call the setParameters() method to give this instance your
/// eigenvalue bound estimates (if you have them), as well as to set
/// other options controlling the behavior of Chebyshev iteration.
/// The documentation of setParameters() lists all the parameters that
/// this class accepts.  Where possible, we list comparable parameters
/// in the Ifpack package and the ML multigrid package.
///
/// \section Ifpack_Chebyshev_Performance Performance
///
/// Chebyshev should spend most of its time in Tpetra's native sparse
/// matrix-vector multiply kernel.  This should give good performance,
/// since we have spent a lot of effort tuning that kernel.  Depending
/// on the Node type of your Tpetra matrix, the kernel may also
/// exploit threads for additional parallelism within each MPI process
/// ("hybrid parallelism" a.k.a. "MPI + X").  If your application
/// depends on hybrid parallelism for performance, you should favor
/// Chebyshev smoothers whenever possible over "serial within a
/// process" smoothers like Gauss-Seidel or SOR (Symmetric
/// Over-Relaxation).
///
/// \section Ifpack_Chebyshev_History History
///
/// The original implementation of this class was an adaptation of
/// ML's ML_Cheby routine.  The original author was Ulrich Hetmaniuk,
/// a Sandia employee in what was then (2006) Org 1416.  Ifpack2 has
/// seen significant development since then.
template<class MatrixType>
class Chebyshev :
    virtual public Ifpack2::Preconditioner<typename MatrixType::scalar_type,
                                           typename MatrixType::local_ordinal_type,
                                           typename MatrixType::global_ordinal_type,
                                           typename MatrixType::node_type>,
    virtual public Ifpack2::Details::CanChangeMatrix<Tpetra::RowMatrix<typename MatrixType::scalar_type,
                                                                       typename MatrixType::local_ordinal_type,
                                                                       typename MatrixType::global_ordinal_type,
                                                                       typename MatrixType::node_type> >
{
public:
  //! \name Typedefs
  //@{

  //! The template parameter of this class.
  typedef MatrixType matrix_type;

  //! The type of the entries of the input MatrixType.
  typedef typename MatrixType::scalar_type scalar_type;

  //! The type of local indices in the input MatrixType.
  typedef typename MatrixType::local_ordinal_type local_ordinal_type;

  //! The type of global indices in the input MatrixType.
  typedef typename MatrixType::global_ordinal_type global_ordinal_type;

  //! The Kokkos::Device specialization used by the input MatrixType.
  typedef typename MatrixType::node_type::device_type device_type;

  //! The Node type used by the input MatrixType.
  typedef typename MatrixType::node_type node_type;

  //! The type of the magnitude (absolute value) of a matrix entry.
  typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;

  /// \brief The Tpetra::RowMatrix specialization matching MatrixType.
  ///
  /// MatrixType must be a Tpetra::RowMatrix specialization.  This
  /// typedef will always be a Tpetra::RowMatrix specialization.
  typedef Tpetra::RowMatrix<scalar_type, local_ordinal_type,
                            global_ordinal_type, node_type> row_matrix_type;

  static_assert (std::is_same<MatrixType, row_matrix_type>::value,
                 "Ifpack2::Chebyshev: MatrixType must be a Tpetra::RowMatrix "
                 "specialization.  Don't use Tpetra::CrsMatrix here.");

  //! The Tpetra::Map specialization matching MatrixType.
  typedef Tpetra::Map<local_ordinal_type, global_ordinal_type, node_type> map_type;

  /// \brief The Tpetra::Vector specialization matching MatrixType.
  ///
  /// If you wish to supply setParameters() a precomputed vector of
  /// diagonal entries of the matrix, use a pointer to an object of
  /// this type.
  typedef Tpetra::Vector<scalar_type, local_ordinal_type,
                         global_ordinal_type, node_type> vector_type;

  //@}
  // \name Constructors and destructors
  //@{

  /// \brief Constructor.
  ///
  /// \param[in] A The sparse matrix to which to apply Chebyshev
  ///   iteration.  The matrix A must be square, and its domain Map
  ///   and range Map must be the same.  The latter means that the
  ///   vectors x and y in the sparse matrix-vector product y = A*x
  ///   must both have the same distribution over process(es).
  ///
  /// We do <i>not</i> require that the row Map and the range Map of A
  /// be the same.  However, set-up will take less time if they are
  /// identical (in terms of pointer equality).  This is because we
  /// have to extract the diagonal entries of A as a row Map vector:
  /// if the row and range Maps are not identical, we have to
  /// redistribute the vector from the row Map to the range Map.
  ///
  /// The constructor will only check the requirements on the various
  /// Maps of A if the CMake configuration option
  /// <tt>Teuchos_ENABLE_DEBUG</tt> was set to <tt>ON</tt> before
  /// building Trilinos.  The checks require \f$O(1)\f$ global
  /// reductions over all processes in A's communicator, so we prefer
  /// to avoid them if we can.
  explicit Chebyshev (const Teuchos::RCP<const row_matrix_type>& A);

  //! Destructor.
  virtual ~Chebyshev ();

  //@}
  //! \name Preconditioner computation methods
  //@{

  /// \brief Set (or reset) parameters.
  ///
  /// This method fills in the input ParameterList with missing
  /// parameters set to their default values.  You may call this
  /// method as many times as you want.  On each call, the input
  /// ParameterList is treated as a complete list of the desired
  /// parameters, not as a "delta" or change list from the current set
  /// of parameters.  (That is, if you remove parameters from the list
  /// that were there in the last call to setParameters() and call
  /// setParameters() again with the revised list, this method will
  /// use default values for the removed parameters, rather than
  /// letting the current settings remain.)  However, since the method
  /// fills in missing parameters, you may keep calling it with the
  /// ParameterList used in the previous call in order to get the same
  /// behavior as before.
  ///
  /// \section Ifpack2_Chebyshev_setParameters_List List of parameters
  ///
  /// Parameters that govern spectral bounds of the matrix:
  /// - "chebyshev: max eigenvalue" (\c ScalarType): lambdaMax, an
  ///   upper bound of the bounding ellipse of the eigenvalues of the
  ///   matrix A.  If you do not set this parameter, we will compute
  ///   an approximation.  See "Parameters that govern eigenvalue
  ///   analysis" to control this approximation process.
  /// - "chebyshev: ratio eigenvalue" (\c ScalarType): eigRatio, the
  ///   ratio of lambdaMax to the lower bound of the bounding ellipse
  ///   of the eigenvalues of A.  We use lambdaMax and eigRatio to
  ///   determine the Chebyshev iteration coefficients.  This
  ///   parameter is optional and defaults to 30.
  /// - "chebyshev: min eigenvalue" (\c ScalarType): lambdaMin, a
  ///   lower bound of real part of bounding ellipse of eigenvalues of
  ///   the matrix A.  This parameter is optional and only used for a
  ///   quick check if the matrix is the identity matrix (if lambdaMax
  ///   == lambdaMin == 1).
  ///
  /// Parameters that govern the number of Chebyshev iterations:
  /// - "chebyshev: degree" (\c int): numIters, the number of
  ///   iterations.  This overrides "relaxation: sweeps" and
  ///   "smoother: sweeps" (see below).
  /// - "relaxation: sweeps" (\c int): numIters, the number of
  ///   iterations.  We include this for compatibility with Ifpack.
  ///   This overrides "smoother: sweeps" (see below).
  /// - "smoother: sweeps" (\c int): numIters, as above.
  ///   We include this for compatibility with ML.
  ///
  /// Parameters that govern eigenvalue analysis:
  /// - "chebyshev: eigenvalue max iterations" (\c int): eigMaxIters,
  ///   the number of power method iterations used to compute the
  ///   maximum eigenvalue.  This overrides "eigen-analysis:
  ///   iterations" (see below).
  /// - "eigen-analysis: iterations" (\c int): eigMaxIters, as above.
  ///   We include this parameter for compatibility with ML.
  /// - "eigen-analysis: type" (<tt>std::string</tt>): The algorithm
  ///   to use for estimating the max eigenvalue.  This parameter is
  ///   optional.  Currently, we only support "power-method" (or
  ///   "power method"), which is what Ifpack::Chebyshev uses for
  ///   eigenanalysis.  We include this parameter for compatibility
  ///   with ML.
  ///
  /// Parameters that govern other algorithmic details:
  /// - "chebyshev: assume matrix does not change": Whether compute()
  ///   should always assume that the matrix has not changed since the
  ///   last call to compute().  The default is false.  If true,
  ///   compute() will not recompute the inverse diagonal or the
  ///   estimates of the max and min eigenvalues.  compute() will
  ///   always compute any quantity which the user did not provide and
  ///   which we have not yet computed before.
  /// - "chebyshev: operator inv diagonal" (<tt>RCP<const V></tt> or
  ///   <tt>const V*</tt>): If nonnull, we will use a deep copy of
  ///   this vector for left scaling as the inverse diagonal of the
  ///   matrix A, instead of computing the inverse diagonal ourselves.
  ///   We will make a copy every time you call setParameters().  If
  ///   you ever call setParameters() without this parameter, we will
  ///   clear our copy and compute the inverse diagonal ourselves
  ///   again.  If you choose to provide this parameter, you are
  ///   responsible for updating this if the matrix has changed.
  /// - "chebyshev: min diagonal value" (\c ST): minDiagVal.  If any
  ///   entry of the diagonal of the matrix is less than this in
  ///   magnitude, it will be replaced with this value in the inverse
  ///   diagonal used for left scaling.
  /// - "chebyshev: zero starting solution" (\c bool): If true, then
  ///   always use the zero vector(s) as the initial guess(es).  If
  ///   false, then apply() will use X on input as the initial
  ///   guess(es).
  ///
  /// \pre lambdaMin, lambdaMax, and eigRatio are real
  /// \pre 0 < lambdaMin <= lambdaMax
  /// \pre numIters >= 0
  /// \pre eigMaxIters >= 0
  ///
  /// \section Ifpack2_Chebyshev_setParameters_compat Note on compatibility with Ifpack and ML
  ///
  /// Both the Ifpack and ML packages implement a Chebyshev smoother.
  /// We accept Ifpack and ML names for parameters whenever Ifpack2
  /// has an equivalent parameter.  Default settings for parameters
  /// relating to spectral bounds come from Ifpack.
  ///
  /// The following list maps from an ML parameter to its
  /// corresponding Ifpack2 parameter.
  /// - "smoother: Chebyshev alpha": "chebyshev: ratio eigenvalue"
  /// - "smoother: sweeps": "chebyshev: degree"
  ///
  /// ML does not have a parameter corresponding to "chebyshev: max
  /// eigenvalue", because ML estimates the spectral radius
  /// automatically.  Ifpack and Ifpack2 both can estimate this
  /// automatically, but also let the user provide an estimate.
  /// Similarly, ML does not have a parameter corresponding to
  /// "chebyshev: min eigenvalue".
  ///
  /// The following list maps from an Ifpack parameter to its
  /// corresponding Ifpack2 parameter.  Many of the parameters have
  /// the same names, in which case we simply write <i>same</i>.
  /// - "chebyshev: max eigenvalue": same
  /// - "chebyshev: ratio eigenvalue": same
  /// - "chebyshev: min eigenvalue": same
  /// - "chebyshev: degree": same
  /// - "relaxation: sweeps": "chebyshev: degree"
  /// - "chebyshev: min diagonal value": same
  /// - "relaxation: min diagonal value": "chebyshev: min diagonal value"
  /// - "chebyshev: zero starting solution": same
  /// - "relaxation: zero starting solution": "chebyshev: zero starting solution"
  /// - "chebyshev: operator inv diagonal": same
  ///
  /// \section Ifpack2_Chebyshev_setParameters_details Details on parameters
  ///
  /// The optional user-provided vector of diagonal entries of the
  /// matrix may have any distribution for which an Export to the
  /// range Map of the matrix is legal.  However, if the vector is
  /// already distributed according to the range Map, that saves us
  /// the communication cost of an Export.  We also avoid the Export
  /// in case the row Map and the range Map of the matrix are the
  /// same.  If they are not the same, and if the vector is
  /// distributed according to the row Map, we will reuse the Export
  /// from the matrix.  Otherwise, we have to make a fresh Export
  /// object, which is more expensive.  To avoid this cost, you should
  /// always provide a row Map or range Map vector for this parameter.
  void setParameters (const Teuchos::ParameterList& params);

  /// \brief Initialize the preconditioner.
  ///
  /// The compute() method will call initialize() automatically if it
  /// has not yet been called, so you do not normally need to call
  /// this.  However, it is correct to call initialize() yourself, and
  /// compute() will not call it again if it already has been called.
  void initialize();

  /// Whether the preconditioner has been successfully initialized
  /// (by calling initialize()).
  inline bool isInitialized() const {
    return IsInitialized_;
  }

  /// \brief (Re)compute the left scaling, and (if applicable)
  ///   estimate max and min eigenvalues of D_inv * A.
  ///
  /// You must call this method before calling apply(),
  /// - if you have not yet called this method,
  /// - if the matrix (either its values or its structure) has changed, or
  /// - any time after you call setParameters().
  ///
  /// Users have the option to supply the left scaling vector D_inv
  /// and estimates of the min and max eigenvalues of D_inv * A as
  /// parameters to setParameters().  If users did <i>not</i> supply a
  /// left scaling, then this method will compute it by default (if
  /// assumeMatrixUnchanged is false).  Likewise, if users did
  /// <i>not</i> supply at least an estimate of the max eigenvalue,
  /// this method will estimate it by default.  If estimation of the
  /// eigenvalues is required, this method may take as long as several
  /// Chebyshev iterations.
  ///
  /// Advanced users may avoid recomputing the left scaling vector and
  /// eigenvalue estimates by setting the "chebyshev: assume matrix
  /// does not change" parameter of setParameters() to \c true.  The
  /// left scaling vector and eigenvalue estimates will always be
  /// computed if the user did not provide them and we have not yet
  /// computed them.  Any changes to parameters that affect
  /// computation of the inverse diagonal or estimation of the
  /// eigenvalue bounds will not affect subsequent apply() operations,
  /// until the "chebyshev: assume matrix does not change" parameter
  /// is set back to \c false (its default value).
  ///
  /// This method will call initialize() if it has not already been
  /// called.  However, you may call initialize() before calling this
  /// method if you wish.
  void compute ();

  /// Whether compute() has been called at least once.
  ///
  /// Note that you must <i>always</i> call compute() if the matrix
  /// has changed, if you have called setParameters(), or if you have
  /// not yet called compute().  This method only tells you if
  /// compute() has been called at least once, not if you need to call
  /// compute().  Ifpack2 doesn't have an efficient way to tell if the
  /// matrix has changed, so we ask users to tell Ifpack2 if the
  /// matrix has changed.
  inline bool isComputed() const {
    return IsComputed_;
  }

  //@}
  //! \name Implementation of Ifpack2::Details::CanChangeMatrix
  //@{

  /// \brief Change the matrix to be preconditioned.
  ///
  /// \param[in] A The new matrix.
  ///
  /// \post <tt>! isInitialized ()</tt>
  /// \post <tt>! isComputed ()</tt>
  ///
  /// Calling this method resets the preconditioner's state.  After
  /// calling this method with a nonnull input, you must first call
  /// initialize() and compute() (in that order) before you may call
  /// apply().
  ///
  /// You may call this method with a null input.  If A is null, then
  /// you may not call initialize() or compute() until you first call
  /// this method again with a nonnull input.  This method invalidates
  /// any previous factorization whether or not A is null, so calling
  /// setMatrix() with a null input is one way to clear the
  /// preconditioner's state (and free any memory that it may be
  /// using).
  ///
  /// The new matrix A need not necessarily have the same Maps or even
  /// the same communicator as the original matrix.
  virtual void
  setMatrix (const Teuchos::RCP<const row_matrix_type>& A);

  //@}
  //! @name Implementation of Tpetra::Operator
  //@{

  /// \brief Apply the preconditioner to X, returning the result in Y.
  ///
  /// This method actually computes Y = beta*Y + alpha*(M*X), where
  /// M*X represents the result of Chebyshev iteration on X, using the
  /// matrix Op(A).  Op(A) is either A itself, its transpose
  /// \f$A^T\f$, or its Hermitian transpose \f$A^H\f$, depending on
  /// the <tt>mode</tt> argument.  Since this class currently requires
  /// A to be real and symmetric positive definite, it should always
  /// be the case that \f$A = A^T = A^H\f$, but we will still respect
  /// the <tt>mode</tt> argument.
  ///
  /// \warning If you did not set the "chebyshev: zero starting
  ///   solution" parameter to true, then this method will use X as
  ///   the starting guess for Chebyshev iteration.  If you did not
  ///   initialize X before calling this method, then the resulting
  ///   solution will be undefined, since it will be computed using
  ///   uninitialized data.
  ///
  /// \param[in] X  A (multi)vector to which to apply the preconditioner.
  /// \param[in,out] Y A (multi)vector containing the result of
  ///   applying the preconditioner to X.
  /// \param[in] mode  If <tt>Teuchos::NO_TRANS</tt>, apply the matrix
  ///   A.  If <tt>mode</tt> is <tt>Teuchos::NO_TRANS</tt>, apply its
  ///   transpose \f$A^T\f$.  If <tt>Teuchos::CONJ_TRANS</tt>, apply
  ///   its Hermitian transpose \f$A^H\f$.
  /// \param[in] alpha  Scaling factor for the result of Chebyshev
  ///   iteration.  The default is 1.
  /// \param[in] beta  Scaling factor for Y.  The default is 0.
  void
  apply (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
         Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y,
         Teuchos::ETransp mode = Teuchos::NO_TRANS,
         scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
         scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;

  //! The Tpetra::Map representing the domain of this operator.
  Teuchos::RCP<const map_type> getDomainMap() const;

  //! The Tpetra::Map representing the range of this operator.
  Teuchos::RCP<const map_type> getRangeMap() const;

  //! Whether it's possible to apply the transpose of this operator.
  bool hasTransposeApply() const;

  /// \brief Compute Y = Op(A)*X, where Op(A) is either A, \f$A^T\f$, or \f$A^H\f$.
  ///
  /// \param[in] X  Input (multi)vector of sparse matrix-vector
  ///   multiply.  If mode == Teuchos::NO_TRANS, X must be in the
  ///   domain Map of the matrix A.  Otherwise, X must be in the range
  ///   Map of A.
  /// \param[out] Y  Output (multi)vector of sparse matrix-vector
  ///   multiply.  If mode == Teuchos::NO_TRANS, Y must be in the
  ///   range Map of the matrix A.  Otherwise, Y must be in the domain
  ///   Map of A.
  /// \param[in] mode  Whether to apply the matrix A, its transpose
  ///   \f$A^T\f$, or its conjugate transpose \f$A^H\f$.  This method
  ///   applies A if <tt>mode</tt> is <tt>Teuchos::NO_TRANS</tt>,
  ///   \f$A^T\f$ if <tt>mode</tt> is <tt>Teuchos::TRANS</tt>, and
  ///   \f$A^H\f$ (the Hermitian transpose) if <tt>mode</tt> is
  ///   <tt>Teuchos::CONJ_TRANS</tt>.
  ///
  /// Since this class currently requires A to be real and symmetric
  /// positive definite, setting <tt>mode</tt> should not affect the
  /// result.
  void
  applyMat (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
            Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y,
            Teuchos::ETransp mode = Teuchos::NO_TRANS) const;

  //@}
  //! \name Attribute accessor methods
  //@{

  //! The communicator over which the matrix is distributed.
  Teuchos::RCP<const Teuchos::Comm<int> > getComm() const;

  //! The matrix for which this is a preconditioner.
  Teuchos::RCP<const row_matrix_type> getMatrix() const;

  /// \brief Attempt to return the matrix A as a Tpetra::CrsMatrix.
  ///
  /// This class does not require that A be a Tpetra::CrsMatrix.
  /// If it is NOT, this method will return Teuchos::null.
  Teuchos::RCP<const Tpetra::CrsMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> >
  getCrsMatrix() const;

  //! The total number of floating-point operations taken by all calls to compute().
  double getComputeFlops() const;

  //! The total number of floating-point operations taken by all calls to apply().
  double getApplyFlops() const;

  //! The total number of successful calls to initialize().
  int getNumInitialize() const;

  //! The total number of successful calls to compute().
  int getNumCompute() const;

  //! The total number of successful calls to apply().
  int getNumApply() const;

  //! The total time spent in all calls to initialize().
  double getInitializeTime() const;

  //! The total time spent in all calls to compute().
  double getComputeTime() const;

  //! The total time spent in all calls to apply().
  double getApplyTime() const;

  //! The estimate of the maximum eigenvalue used in the apply().
  typename MatrixType::scalar_type getLambdaMaxForApply() const;

  //@}
  //! @name Implementation of Teuchos::Describable
  //@{

  //! A simple one-line description of this object.
  std::string description() const;

  //! Print the object with some verbosity level to a Teuchos::FancyOStream.
  void describe(Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const;

  //@}
  //! \name Utility methods
  //@{

  // This "template friend" declaration lets any Chebyshev
  // specialization be a friend of any of its other specializations.
  // That makes clone() easier to implement.
  template <class NewMatrixType> friend class Chebyshev;

  /// \brief Clone this object to one with a different Node type.
  ///
  /// \tparam NewMatrixType The template parameter of the new
  ///   preconditioner to return; a specialization of
  ///   Tpetra::RowMatrix or any subclass thereof.  The intent is that
  ///   this type differ from \c MatrixType only in its fourth Node
  ///   template parameter.  However, this is not strictly required.
  ///
  /// \param[in] A_newnode  The matrix, with the new Node type.
  ///
  /// \param[in,out] params Parameters for the new preconditioner.
  ///
  /// \pre If \c A_newnode is a Tpetra::RowMatrix, it must be fill
  ///   complete.
  ///
  /// \post <tt>P->isInitialized() && P->isComputed()</tt>, where \c P
  ///   is the returned object.  That is, P's apply() method is ready
  ///   to be called; P is ready for use as a preconditioner.  This is
  ///   true regardless of the current state of <tt>*this</tt>.
  template <typename NewMatrixType>
  Teuchos::RCP<Chebyshev<Tpetra::RowMatrix<typename NewMatrixType::scalar_type, typename NewMatrixType::local_ordinal_type, typename NewMatrixType::global_ordinal_type, typename NewMatrixType::node_type> > >
  clone (const Teuchos::RCP<const NewMatrixType>& A_newnode,
         const Teuchos::ParameterList& params) const;

  //@}

private:

  //! Abbreviation for the Teuchos::ScalarTraits specialization for scalar_type.
  typedef Teuchos::ScalarTraits<typename MatrixType::scalar_type> STS;

  //! Abbreviation for the Tpetra::MultiVector specialization used in methods like apply().
  typedef Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type> MV;

  //! Copy constructor (use is syntactically forbidden)
  Chebyshev (const Chebyshev<MatrixType>&);

  //! Assignment operator (use is syntactically forbidded)
  Chebyshev<MatrixType>& operator= (const Chebyshev<MatrixType>&);

  /// \brief Y := beta*Y + alpha*M*X.
  ///
  /// M*X represents the result of Chebyshev iteration with right-hand
  /// side(s) X and initial guess(es) Y, using the matrix Op(A).  Op(A)
  /// is A if mode is <tt>Teuchos::NO_TRANS</tt>, \f$A^T\f$ if mode is
  /// <tt>Teuchos::TRANS</tt>, and \f$A^H\f$ if mode is
  /// <tt>Teuchos::CONJ_TRANS</tt>.
  void
  applyImpl (const MV& X,
             MV& Y,
             Teuchos::ETransp mode,
             scalar_type alpha,
             scalar_type beta) const;

  //! \name Internal state
  //@{

  /// The actual implementation of Chebyshev iteration.
  ///
  /// This is declared "mutable" because the implementation caches
  /// things in its apply() method, which makes it "morally" nonconst.
  /// I prefer that morals and syntax go together, so I didn't declare
  /// this class' apply() method const.  Hence, we have to declare the
  /// whole thing mutable here.
  mutable Details::Chebyshev<scalar_type, MV> impl_;

  //! If \c true, initialize() has completed successfully.
  bool IsInitialized_;
  //! If \c true, compute() has completed successfully.
  bool IsComputed_;
  //! The total number of successful calls to initialize().
  int NumInitialize_;
  //! The total number of successful calls to compute().
  int NumCompute_;
  /// \brief The total number of successful calls to apply().
  ///
  /// This is "mutable" because apply() is a const method; apply() is
  /// const because it is declared this way in Tpetra::Operator.
  mutable int NumApply_;
  //! The total time in seconds over all calls to initialize().
  double InitializeTime_;
  //! The total time in seconds over all calls to compute().
  double ComputeTime_;
  /// \brief The total time in seconds over all calls to apply().
  ///
  /// This is "mutable" because apply() is a const method; apply() is
  /// const because it is declared this way in Tpetra::Operator.
  mutable double ApplyTime_;
  //! The total number of floating-point operations over all calls to compute().
  double ComputeFlops_;
  /// \brief The total number of floating-point operations over all calls to apply().
  ///
  /// This is "mutable" because apply() is a const method; apply() is
  /// const because it is declared this way in Tpetra::Operator.
  mutable double ApplyFlops_;

  //@}
}; // class Chebyshev


template <typename MatrixType>
template <typename NewMatrixType>
Teuchos::RCP<Chebyshev<Tpetra::RowMatrix<typename NewMatrixType::scalar_type, typename NewMatrixType::local_ordinal_type, typename NewMatrixType::global_ordinal_type, typename NewMatrixType::node_type> > >
Chebyshev<MatrixType>::
clone (const Teuchos::RCP<const NewMatrixType>& A_newnode,
       const Teuchos::ParameterList& params) const
{
  using Teuchos::RCP;
  typedef Tpetra::RowMatrix<typename NewMatrixType::scalar_type,
    typename NewMatrixType::local_ordinal_type,
    typename NewMatrixType::global_ordinal_type,
    typename NewMatrixType::node_type> new_row_matrix_type;
  typedef Ifpack2::Chebyshev<new_row_matrix_type> new_prec_type;

  RCP<new_prec_type> prec (new new_prec_type (A_newnode));
  prec->setParameters (params);
  prec->initialize ();
  prec->compute ();
  return prec;
}

} // namespace Ifpack2

#endif // IFPACK2_CHEBYSHEV_DECL_HPP