This file is indexed.

/usr/include/trilinos/Ifpack2_BandedContainer_decl.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_BANDEDCONTAINER_DECL_HPP
#define IFPACK2_BANDEDCONTAINER_DECL_HPP

/// \file Ifpack2_BandedContainer_decl.hpp
/// \brief Ifpack2::BandedContainer class declaration

#include "Ifpack2_Container.hpp"
#include "Ifpack2_Details_MultiVectorLocalGatherScatter.hpp"
#include "Ifpack2_Details_LapackSupportsScalar.hpp"
#include "Tpetra_MultiVector.hpp"
#include "Tpetra_Map.hpp"
#include "Tpetra_RowMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_SerialBandDenseMatrix.hpp"

namespace Ifpack2 {

/// \class BandedContainer
/// \brief Store and solve a local Banded linear problem.
/// \tparam MatrixType A specialization of Tpetra::RowMatrix.
///
/// Please refer to the documentation of the Container
/// interface. Currently, Containers are used by BlockRelaxation.
/// Block relaxations need to be able to do two things:
/// <ol>
/// <li> Store the diagonal blocks </li>
/// <li> Solve linear systems with each diagonal block </li>
/// </ol>
/// BandedContainer stores the diagonal blocks as Banded matrices, and
/// solves them using either LAPACK (for the four Scalar types that it
/// supports) or a custom LU factorization (for Scalar types not
/// supported by LAPACK).
///
/// As with Ifpack2::Container, <tt>MatrixType</tt> must be a
/// specialization of Tpetra::RowMatrix.  Using a Banded matrix for
/// each block is a good idea when the blocks are small.  For large
/// and / or sparse blocks, it would probably be better to use an
/// implementation of Container that stores the blocks sparsely, in
/// particular SparseContainer.
///
/// This class may store the Banded local matrix using values of a
/// different type (\c LocalScalarType) than those in \c MatrixType.
/// You may mix and match so long as implicit conversions are
/// available between \c LocalScalarType and
/// <tt>MatrixType::scalar_type</tt>.
///
/// This class currently assumes the following about the column and
/// row Maps of the input matrix:
/// <ol>
/// <li> On all processes, the column and row Maps begin with the same
///      set of on-process entries, in the same order.  That is,
///      on-process row and column indices are the same.</li>
/// <li> On all processes, all off-process indices in the column Map
///      of the input matrix occur after that initial set.</li>
/// </ol>
/// These assumptions may be violated if the input matrix is a
/// Tpetra::CrsMatrix that was constructed with a user-provided column
/// Map.  The assumptions are not mathematically necessary and could
/// be relaxed at any time.  Implementers who wish to do so will need
/// to modify the extract() method, so that it translates explicitly
/// between local row and column indices, instead of just assuming
/// that they are the same.
template<class MatrixType,
         class LocalScalarType,
         bool supportsLapackScalar = ::Ifpack2::Details::LapackSupportsScalar<LocalScalarType>::value>
class BandedContainer;

template<class MatrixType, class LocalScalarType>
class BandedContainer<MatrixType, LocalScalarType, true> :
    public Container<MatrixType> {
  //! @name Internal typedefs (private)
  //@{
private:
  /// \brief The first template parameter of this class.
  ///
  /// This must be either a Tpetra::RowMatrix specialization or a
  /// Tpetra::CrsMatrix specialization.  It may have entirely
  /// different template parameters (e.g., \c scalar_type) than
  /// <tt>InverseType</tt>.
  typedef MatrixType matrix_type;
  //! The second template parameter of this class.
  typedef LocalScalarType local_scalar_type;
  //! The internal representation of LocalScalarType in Kokkos::View
  typedef typename Kokkos::Details::ArithTraits<local_scalar_type>::val_type local_impl_scalar_type;

  //! The type of entries in the input (global) matrix.
  typedef typename Container<MatrixType>::scalar_type scalar_type;
  //! The type of local indices in the input (global) matrix.
  typedef typename Container<MatrixType>::local_ordinal_type local_ordinal_type;
  //! The type of global indices in the input (global) matrix.
  typedef typename Container<MatrixType>::global_ordinal_type global_ordinal_type;
  //! The Node type of the input (global) matrix.
  typedef typename Container<MatrixType>::node_type node_type;

  typedef typename Container<MatrixType>::mv_type mv_type;
  typedef typename Container<MatrixType>::map_type map_type;
  typedef Tpetra::MultiVector<local_scalar_type, local_ordinal_type, global_ordinal_type, node_type> local_mv_type;
  typedef typename Container<MatrixType>::vector_type vector_type;
  typedef typename Container<MatrixType>::partitioner_type partitioner_type;
  typedef typename Container<MatrixType>::import_type import_type;

  typedef typename Container<MatrixType>::HostView HostView;
  typedef typename local_mv_type::dual_view_type::t_host HostViewLocal;

  static_assert(std::is_same<MatrixType,
                  Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> >::value,
                "Ifpack2::BandedContainer: Please use MatrixType = Tpetra::RowMatrix.");

  /// \brief The (base class) type of the input matrix.
  ///
  /// The input matrix to the constructor may be either a
  /// Tpetra::RowMatrix specialization or a Tpetra::CrsMatrix
  /// specialization.  However, we want to make the constructor as
  /// general as possible, so we always accept the matrix as a
  /// Tpetra::RowMatrix.  This typedef is the appropriate
  /// specialization of Tpetra::RowMatrix.
  typedef typename Container<MatrixType>::row_matrix_type row_matrix_type;

  //@}
public:
  //! \name Constructor and destructor
  //@{

  /// \brief Constructor.
  ///
  /// \brief matrix [in] The original input matrix.  This Container
  ///   will construct a local diagonal block from the rows given by
  ///   <tt>localRows</tt>.
  ///
  /// \param localRows [in] The set of (local) rows assigned to this
  ///   container.  <tt>localRows[i] == j</tt>, where i (from 0 to
  ///   <tt>getNumRows() - 1</tt>) indicates the SparseContainer's
  ///   row, and j indicates the local row in the calling process.
  ///   <tt>localRows.size()</tt> gives the number of rows in the
  ///   local matrix on each process.  This may be different on
  ///   different processes.
  ///   <tt>number of subdiagonals
  ///   <tt>number of superdiagonals. Note: Internally, we store a Teuchos::SerialBandedMatrix
  ///       with kl+ku superdiagonals, as we need the addtional storage for the LU decomposition.
  BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                   const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                   const Teuchos::RCP<const import_type>& importer,
                   int OverlapLevel,
                   scalar_type DampingFactor);

  BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                   const Teuchos::Array<local_ordinal_type>& localRows);

  //! Destructor (declared virtual for memory safety of derived classes).
  virtual ~BandedContainer ();

  //@}
  //! \name Get and set methods
  //@{

  //! Whether the container has been successfully initialized.
  virtual bool isInitialized () const {
    return IsInitialized_;
  }

  //! Whether the container has been successfully computed.
  virtual bool isComputed () const {
    return IsComputed_;
  }

  //! Set all necessary parameters.
  virtual void setParameters (const Teuchos::ParameterList& List);

  //@}
  //! \name Mathematical functions
  //@{

  //! Do all set-up operations that only require matrix structure.
  virtual void initialize ();

  //! Initialize and compute each block.
  virtual void compute ();

  void clearBlocks();

  //! Compute <tt>Y := alpha * M^{-1} X + beta*Y</tt>.
  virtual void
  apply (HostView& X,
         HostView& Y,
         int blockIndex,
         int stride,
         Teuchos::ETransp mode = Teuchos::NO_TRANS,
         scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
         scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;

  //! Compute <tt>Y := alpha * diag(D) * M^{-1} (diag(D) * X) + beta*Y</tt>.
  virtual void
  weightedApply (HostView& X,
                 HostView& Y,
                 HostView& D,
                 int blockIndex,
                 int stride,
                 Teuchos::ETransp mode = Teuchos::NO_TRANS,
                 scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
                 scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;

  //@}
  //! \name Miscellaneous methods
  //@{

  /// \brief Print information about this object to the given output stream.
  ///
  /// operator<< uses this method.
  virtual std::ostream& print (std::ostream& os) const;

  //@}
  //! @name Implementation of Teuchos::Describable
  //@{

  //! A one-line description of this object.
  virtual std::string description () const;

  //! Print the object with some verbosity level to the given FancyOStream.
  virtual void
  describe (Teuchos::FancyOStream &out,
            const Teuchos::EVerbosityLevel verbLevel =
            Teuchos::Describable::verbLevel_default) const;

  //@}

  /// \brief Get the name of this container type for Details::constructContainer()
  static std::string getName();

private:
  //! Copy constructor: Declared but not implemented, to forbid copy construction.
  BandedContainer (const BandedContainer<MatrixType, LocalScalarType>& rhs);

  //! Extract the submatrix identified by the local indices set by the constructor.
  void extract ();

  /// \brief Factor the extracted submatrix.
  ///
  /// Call this after calling extract().
  void factor ();

  /// \brief Post-permutation, post-view version of apply().
  ///
  /// apply() first does any necessary subset permutation and view
  /// creation (or copying data), then calls this method to solve the
  /// linear system with the diagonal block.
  ///
  /// \param X [in] Subset permutation of the input X of apply().
  /// \param Y [in] Subset permutation of the input/output Y of apply().
  void
  applyImpl (HostViewLocal& X,
             HostViewLocal& Y,
             int blockIndex,
             int stride,
             Teuchos::ETransp mode,
             const local_scalar_type alpha,
             const local_scalar_type beta) const;

  //! The local diagonal block, which compute() extracts.
  std::vector<Teuchos::SerialBandDenseMatrix<int, local_scalar_type> > diagBlocks_;

  //! Temporary X vector used in apply().
  mutable std::vector<HostViewLocal> X_local;

  //! Temporary Y vector used in apply().
  mutable std::vector<HostViewLocal> Y_local;

  //! Permutation array from LAPACK (GETRF).
  Teuchos::Array<int> ipiv_;

  //! If \c true, the container has been successfully initialized.
  bool IsInitialized_;

  //! If \c true, the container has been successfully computed.
  bool IsComputed_;

  Teuchos::Array<local_ordinal_type> kl_; //< number of subdiagonals
  Teuchos::Array<local_ordinal_type> ku_; //< number of superdiagonals

  //! Scalar data for all blocks
  local_scalar_type* scalars_;

  //! Offsets in scalars_ array for all blocks
  Teuchos::Array<local_ordinal_type> scalarOffsets_;
};

template<class MatrixType, class LocalScalarType>
class BandedContainer<MatrixType, LocalScalarType, false> :
    public Container<MatrixType> {
  //! @name Internal typedefs (private)
  //@{
private:
  /// \brief The first template parameter of this class.
  ///
  /// This must be either a Tpetra::RowMatrix specialization or a
  /// Tpetra::CrsMatrix specialization.  It may have entirely
  /// different template parameters (e.g., \c scalar_type) than
  /// <tt>InverseType</tt>.
  typedef MatrixType matrix_type;
  //! The second template parameter of this class.
  typedef LocalScalarType local_scalar_type;
  //! The internal representation of LocalScalarType in Kokkos::View
  typedef typename Kokkos::Details::ArithTraits<local_scalar_type>::val_type local_impl_scalar_type;

  //! The type of entries in the input (global) matrix.
  typedef typename Container<MatrixType>::scalar_type scalar_type;
  //! The type of local indices in the input (global) matrix.
  typedef typename Container<MatrixType>::local_ordinal_type local_ordinal_type;
  //! The type of global indices in the input (global) matrix.
  typedef typename Container<MatrixType>::global_ordinal_type global_ordinal_type;
  //! The Node type of the input (global) matrix.
  typedef typename Container<MatrixType>::node_type node_type;

  typedef typename Container<MatrixType>::mv_type mv_type;
  typedef typename Container<MatrixType>::map_type map_type;
  typedef Tpetra::MultiVector<local_scalar_type, local_ordinal_type, global_ordinal_type, node_type> local_mv_type;
  typedef typename Container<MatrixType>::vector_type vector_type;
  typedef typename Container<MatrixType>::partitioner_type partitioner_type;
  typedef typename Container<MatrixType>::import_type import_type;

  typedef typename Container<MatrixType>::HostView HostView;
  typedef typename local_mv_type::dual_view_type::t_host HostViewLocal;

  static_assert(std::is_same<MatrixType,
                  Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> >::value,
                "Ifpack2::BandedContainer: Please use MatrixType = Tpetra::RowMatrix.");

  /// \brief The (base class) type of the input matrix.
  ///
  /// The input matrix to the constructor may be either a
  /// Tpetra::RowMatrix specialization or a Tpetra::CrsMatrix
  /// specialization.  However, we want to make the constructor as
  /// general as possible, so we always accept the matrix as a
  /// Tpetra::RowMatrix.  This typedef is the appropriate
  /// specialization of Tpetra::RowMatrix.
  typedef typename Container<MatrixType>::row_matrix_type row_matrix_type;

  //@}
public:
  //! \name Constructor and destructor
  //@{

  /// \brief Constructor.
  ///
  /// \brief matrix [in] The original input matrix.  This Container
  ///   will construct a local diagonal block from the rows given by
  ///   <tt>localRows</tt>.
  ///
  /// \param localRows [in] The set of (local) rows assigned to this
  ///   container.  <tt>localRows[i] == j</tt>, where i (from 0 to
  ///   <tt>getNumRows() - 1</tt>) indicates the SparseContainer's
  ///   row, and j indicates the local row in the calling process.
  ///   <tt>localRows.size()</tt> gives the number of rows in the
  ///   local matrix on each process.  This may be different on
  ///   different processes.
  ///   <tt>number of subdiagonals
  ///   <tt>number of superdiagonals. Note: Internally, we store a Teuchos::SerialBandedMatrix
  ///       with kl+ku superdiagonals, as we need the addtional storage for the LU decomposition.
  BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                   const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                   const Teuchos::RCP<const import_type>& importer,
                   int OverlapLevel,
                   scalar_type DampingFactor);

  BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                   const Teuchos::Array<local_ordinal_type>& localRows);

  //! Destructor (declared virtual for memory safety of derived classes).
  virtual ~BandedContainer ();

  //@}
  //! \name Get and set methods
  //@{

  //! Whether the container has been successfully initialized.
  virtual bool isInitialized () const {
    return IsInitialized_;
  }

  //! Whether the container has been successfully computed.
  virtual bool isComputed () const {
    return IsComputed_;
  }

  //! Set all necessary parameters.
  virtual void setParameters (const Teuchos::ParameterList& List);

  //@}
  //! \name Mathematical functions
  //@{

  //! Do all set-up operations that only require matrix structure.
  virtual void initialize ();

  //! Initialize and compute each block.
  virtual void compute ();

  void clearBlocks();

  //! Compute <tt>Y := alpha * M^{-1} X + beta*Y</tt>.
  virtual void
  apply (HostView& X,
         HostView& Y,
         int blockIndex,
         int stride,
         Teuchos::ETransp mode = Teuchos::NO_TRANS,
         scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
         scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;

  //! Compute <tt>Y := alpha * diag(D) * M^{-1} (diag(D) * X) + beta*Y</tt>.
  virtual void
  weightedApply (HostView& X,
                 HostView& Y,
                 HostView& D,
                 int blockIndex,
                 int stride,
                 Teuchos::ETransp mode = Teuchos::NO_TRANS,
                 scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
                 scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;

  //@}
  //! \name Miscellaneous methods
  //@{

  /// \brief Print information about this object to the given output stream.
  ///
  /// operator<< uses this method.
  virtual std::ostream& print (std::ostream& os) const;

  //@}
  //! @name Implementation of Teuchos::Describable
  //@{

  //! A one-line description of this object.
  virtual std::string description () const;

  //! Print the object with some verbosity level to the given FancyOStream.
  virtual void
  describe (Teuchos::FancyOStream &out,
            const Teuchos::EVerbosityLevel verbLevel =
            Teuchos::Describable::verbLevel_default) const;

  //@}

  /// \brief Get the name of this container type for Details::constructContainer()
  static std::string getName();

private:
  //! Copy constructor: Declared but not implemented, to forbid copy construction.
  BandedContainer (const BandedContainer<MatrixType, LocalScalarType>& rhs);

  //! Extract the submatrix identified by the local indices set by the constructor.
  void extract ();

  /// \brief Factor the extracted submatrix.
  ///
  /// Call this after calling extract().
  void factor ();

  /// \brief Post-permutation, post-view version of apply().
  ///
  /// apply() first does any necessary subset permutation and view
  /// creation (or copying data), then calls this method to solve the
  /// linear system with the diagonal block.
  ///
  /// \param X [in] Subset permutation of the input X of apply().
  /// \param Y [in] Subset permutation of the input/output Y of apply().
  void
  applyImpl (HostViewLocal& X,
             HostViewLocal& Y,
             int blockIndex,
             int stride,
             Teuchos::ETransp mode,
             const local_scalar_type alpha,
             const local_scalar_type beta) const;

  //! The local diagonal block, which compute() extracts.
  std::vector<Teuchos::SerialBandDenseMatrix<int, local_scalar_type> > diagBlocks_;

  //! Temporary X vector used in apply().
  mutable std::vector<HostViewLocal> X_local;

  //! Temporary Y vector used in apply().
  mutable std::vector<HostViewLocal> Y_local;

  //! Permutation array from LAPACK (GETRF).
  Teuchos::Array<int> ipiv_;

  //! If \c true, the container has been successfully initialized.
  bool IsInitialized_;

  //! If \c true, the container has been successfully computed.
  bool IsComputed_;

  Teuchos::Array<local_ordinal_type> kl_; //< number of subdiagonals
  Teuchos::Array<local_ordinal_type> ku_; //< number of superdiagonals

  //! Scalar data for all blocks
  local_scalar_type* scalars_;

  //! Offsets in scalars_ array for all blocks
  Teuchos::Array<local_ordinal_type> scalarOffsets_;
};

}// namespace Ifpack2

#endif // IFPACK2_BANDEDCONTAINER_DECL_HPP