This file is indexed.

/usr/include/trilinos/BelosLSQRSolMgr.hpp is in libtrilinos-belos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_LSQR_SOLMGR_HPP
#define BELOS_LSQR_SOLMGR_HPP

/// \file BelosLSQRSolMgr.hpp
/// \brief LSQRSolMgr: interface to the LSQR method.

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"

#include "BelosLSQRIteration.hpp"
#include "BelosLSQRIter.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosLSQRStatusTest.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_as.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"

#ifdef BELOS_TEUCHOS_TIME_MONITOR
#include "Teuchos_TimeMonitor.hpp"
#endif

namespace Belos {


//! @name LSQRSolMgr Exceptions
//@{

/** \brief Belos::LSQRSolMgrLinearProblemFailure is thrown when the linear problem is
 * not setup (i.e. setProblem() was not called) when solve() is called.
 *
 * This std::exception is thrown from the LSQRSolMgr::solve() method.
 *
 */
class LSQRSolMgrLinearProblemFailure : public BelosError {
public:
  LSQRSolMgrLinearProblemFailure(const std::string& what_arg)
    : BelosError(what_arg)
  {}
};

/** \brief LSQRSolMgrOrthoFailure is thrown when the orthogonalization manager is
 * unable to generate orthonormal columns from the initial basis vectors.
 *
 * \warning DO NOT USE; DEPRECATED.
 *
 * This std::exception is thrown from the LSQRSolMgr::solve() method.
 *
 */
class LSQRSolMgrOrthoFailure : public BelosError {
public:
  LSQRSolMgrOrthoFailure(const std::string& what_arg)
    : BelosError(what_arg)
  {}
};

/** \brief LSQRSolMgrBlockSizeFailure is thrown when the linear problem has
 * more than one RHS.  This is unique to single vector methods.
 *
 * This std::exception is thrown from the LSQRSolMgr::solve() method.
 *
 */
class LSQRSolMgrBlockSizeFailure : public BelosError {
public:
  LSQRSolMgrBlockSizeFailure(const std::string& what_arg)
  : BelosError(what_arg)
  {}
};

/// \class LSQRSolMgr
/// \brief LSQR method (for linear systems and linear least-squares problems).
/// \author Sarah Knepper and David Day
///
/// \tparam ScalarType The type of entries in the right-hand side
///   vector(s) \f$b\f$ and solution vector(s) \f$x\f$.
/// \tparam MV The multivector type; the type of the solution
///   vector(s) and right-hand side vector(s).
/// \tparam OP The type of the matrix \f$A\f$ (and any preconditioner,
///   if one is provided).
///
/// \section Belos_LSQR_alg Algorithm
///
/// LSQR (Paige and Saunders; see References) is an iterative method
/// for solving linear least-squares problems and linear systems.  It
/// can solve any of the following problems:
///
/// 1. Solve \f$Ax=b\f$ for \f$x\f$
/// 2. Find \f$x\f$ that minimizes \f$\|Ax - b\|_2^2\f$
/// 3. Find \f$x\f$ that minimizes \f$\|Ax - b\|_2^2 + \lambda^2 \|x\|_2^2\f$
///
/// The third problem above is the most general and includes the
/// previous two.  This is the problem LSQR actually solves.  Here,
/// \f$\lambda\f$ is a user-provided positive real constant (the
/// "damping parameter") which regularizes the problem so that it
/// always has a bounded solution, even if \f$A\f$ does not have full
/// rank.
///
/// In the words of Paige and Saunders: "The method is based on the
/// Golub-Kahan bidiagonalization process. It is algebraically
/// equivalent to applying MINRES to the normal equation[s] \f$(A^T A
/// + \lambda 2I)x = A^T b\f$, but has better numerical properties,
/// especially if \f$A\f$ is ill-conditioned."
///
/// LSQR has some special algorithmic properties:
///
/// 1. It reduces \f$\|b - A x\|_2\f$ (the two-norm of the residual)
///    monotonically.
/// 2. LSQR also computes a monotonically increasing estimate of the
///    two-norm condition number of the matrix \f$A\f$.
///
/// Property #2 makes LSQR useful for mixed-precision algorithms.  If
/// the matrix \f$A\f$ has condition number greater than the inverse
/// of machine precision in the current working precision, one can
/// reconstruct the problem to solve in the next higher precision and
/// restart, possibly using the previous solution as an initial guess.
///
/// \section Belos_LSQR_real ScalarType must be real
///
/// This LSQR implementation currently only supports real-valued (not
/// complex-valued) ScalarType types.  You may check whether ScalarType is
/// complex using the following code:
/// \code
/// if (Teuchos::ScalarTraits<ScalarType>::isComplex) {
///  // ScalarType is complex valued.
/// } else {
///  // ScalarType is real valued.
/// }
/// \endcode
///
/// This is not a limitation of the LSQR method itself, just of the
/// current implementation.  If there is sufficient interest, we can
/// remedy this deficiency.  For now, if you attempt to invoke the
/// constructor when <tt>ScalarType</tt> is complex, the constructor
/// will throw an exception.  This is why this class inherits from
/// Details::RealSolverManager.  LSQRSolMgr can still compile if
/// <tt>ScalarType</tt> is complex, but you will not be able to
/// construct a LSQRSolMgr instance in that case, due to the
/// aforementioned run-time error that the constructor raises.  We do
/// this so that the class will still compile, whether ScalarType is
/// real or complex.  This helps make SolverFactory valid to compile,
/// whether ScalarType is real or complex.
///
/// \section Belos_LSQR_prec Preconditioning
///
/// If the linear problem to solve includes a preconditioner (in the
/// LinearProblem object), then the least-squares problem is solved
/// for the preconditioned linear system.  Preconditioning changes the
/// least-squares problem (in the sense of changing the norms), and
/// the solution depends on the preconditioner in this sense.  In the
/// context of linear least-squares problems, "preconditioning" refers
/// to the regularization matrix.  In this solver, the regularization
/// matrix is always a scalar multiple of the identity (standard form
/// least squares).
///
/// A converged preconditioned residual norm suffices for convergence,
/// but is not necessary.  LSQR sometimes returns a larger relative
/// residual norm than what would have been returned by a linear
/// solver.  For details on the stopping criteria, see the
/// documentation of \c LSQRStatusTest, which implements the
/// three-part stopping criterion recommended by Paige and Saunders.
///
/// Some Belos solvers implement detection of "loss of accuracy."
/// That refers to the difference between convergence of the original
/// linear system and convergence of the (left-)preconditioned linear
/// system.  LSQR does not implement detection of "loss of accuracy,"
/// because it is unclear what this means for linear least squares in
/// general.  This LSQR solves a possibly inconsistent system in a
/// least-squares sense.
///
/// \section Belos_LSQR_refs References
///
/// C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse
/// linear equations and sparse least squares, TOMS 8(1), 43-71
/// (1982).
///
/// C. C. Paige and M. A. Saunders, Algorithm 583; LSQR: Sparse linear
/// equations and least-squares problems, TOMS 8(2), 195-209 (1982).
///
/// See also the <a
/// href="http://www.stanford.edu/group/SOL/software/lsqr.html">LSQR
/// web page.</a>
///


// Partial specialization for complex ScalarType.
// This contains a trivial implementation.
// See discussion in the class documentation above.
template<class ScalarType, class MV, class OP,
         const bool scalarTypeIsComplex = Teuchos::ScalarTraits<ScalarType>::isComplex>
class LSQRSolMgr :
    public Details::RealSolverManager<ScalarType, MV, OP,
                                      Teuchos::ScalarTraits<ScalarType>::isComplex>
{
  static const bool isComplex = Teuchos::ScalarTraits<ScalarType>::isComplex;
  typedef Details::RealSolverManager<ScalarType, MV, OP, isComplex> base_type;

public:
  LSQRSolMgr () :
    base_type ()
  {}
  LSQRSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
              const Teuchos::RCP<Teuchos::ParameterList> &pl) :
    base_type ()
  {}
  virtual ~LSQRSolMgr () {}
};


// Partial specialization for real ScalarType.
// This contains the actual working implementation of LSQR.
// See discussion in the class documentation above.
template<class ScalarType, class MV, class OP>
class LSQRSolMgr<ScalarType, MV, OP, false> :
    public Details::RealSolverManager<ScalarType, MV, OP, false> {
private:
  typedef MultiVecTraits<ScalarType,MV> MVT;
  typedef OperatorTraits<ScalarType,MV,OP> OPT;
  typedef Teuchos::ScalarTraits<ScalarType> STS;
  typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
  typedef Teuchos::ScalarTraits<MagnitudeType> STM;

public:

  //! @name Construct/Destroy
  //@{

  /*! \brief Empty constructor for LSQRSolMgr.
   * This constructor takes no arguments and sets the default values for the solver.
   * The linear problem must be passed in using setProblem() before solve() is called
   * on this object.
   * The solver values can be changed using setParameters().
   */
  LSQRSolMgr ();

  /*! \brief Basic constructor for LSQRSolMgr.
   *
   * This constructor accepts the LinearProblem to be solved in addition
   * to a parameter list of options for the solver manager.  Blocks of size > 1 are not
   * implemented.  The options are otherwise the BlockGmres options.
   *   - "Maximum Iterations" - the maximum number of iterations the LSQR solver
   *                            is allowed to perform. Default: 1000
   *   - "Condition Limit" - a \c MagnitudeType specifying the upper limit of the estimate of
   *                         the norm of Abar to decide convergence. Default: 0.
   *   - "Term Iter Max": The number of consecutive successful
   *     iterations required before LSQR considers the problem
   *     converged.  Default: 1.
   *   - "Rel RHS Err" (or "Convergence Tolerance"): an estimate of
   *     the error in the data defining the right-hand side.  Default:
   *     10*sqrt(eps).
   *   - "Rel Mat Err" - an estimate of the error in the data defining the matrix.
   *                     Default: 10*sqrt(eps).
   *   - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
   *   - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
   *   - "Lambda"  - a \c MagnitudeType that specifies the regularization parameter.
   *
   * This LSQR implementation only supports block size 1.  Like CG,
   * LSQR is a short recurrence method that, in finite precision
   * arithmetic and without reorthogonalization, does not have the "n"
   * step convergence property.  Without either blocks or
   * reorthogonalization, there is nothing to "Orthogonalize."
   */
  LSQRSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >& problem,
              const Teuchos::RCP<Teuchos::ParameterList>& pl);

  //! Destructor (declared virtual for memory safety of base classes).
  virtual ~LSQRSolMgr () {}

  //@}
  //! \name Accessor methods
  //@{

  /*! \brief Get current linear problem being solved for in this object.
   */
  const LinearProblem<ScalarType,MV,OP>& getProblem () const {
    return *problem_;
  }

  /*! \brief Get a parameter list containing the valid parameters for this object.
   */
  Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;

  /*! \brief Get a parameter list containing the current parameters for this object.
   */
  Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const {
    return params_;
  }

  /*! \brief Return the timers for this object.
   *
   * The timers are ordered as follows:
   *   - time spent in solve() routine
   */
  Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers () const {
    return Teuchos::tuple (timerSolve_);
  }

  //! Iteration count from the last solve.
  int getNumIters () const {
    return numIters_;
  }

  /// \brief Estimated matrix condition number from the last solve.
  ///
  /// LSQR computes a running condition number estimate of the
  /// (preconditioned, if applicable) operator.
  MagnitudeType getMatCondNum () const {
    return matCondNum_;
  }

  /// \brief Estimated matrix Frobenius norm from the last solve.
  ///
  /// LSQR computes a running Frobenius norm estimate of the
  /// (preconditioned, if applicable) operator.
  MagnitudeType getMatNorm () const {
    return matNorm_;
  }

  /// \brief Estimated residual norm from the last solve.
  ///
  /// LSQR computes the current residual norm.  LSQR can solve
  /// inconsistent linear systems in a least-squares sense, so the
  /// residual norm may not necessarily be small, even if LSQR
  /// converges.  (LSQR defines "convergence" to allow for possibly
  /// inconsistent systems.  See the documentation of \c
  /// LSQRStatusTest for details.)
  MagnitudeType getResNorm () const {
    return resNorm_;
  }

  //! Estimate of \f$A^* r\f$ (residual vector \f$r\f$) from the last solve.
  MagnitudeType getMatResNorm () const {
    return matResNorm_;
  }

  /// \brief Whether a loss of accuracy was detected during the last solve.
  ///
  /// The "loss of accuracy" concept is not yet implemented here,
  /// becuase it is unclear what this means for linear least squares.
  /// LSQR solves a possibly inconsistent linear system in a
  /// least-squares sense.  "Loss of accuracy" would correspond to the
  /// difference between the preconditioned residual and the
  /// unpreconditioned residual.
  bool isLOADetected () const { return false; }

  //@}

  //! @name Set methods
  //@{

  //! Set the linear problem that needs to be solved.
  void setProblem (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >& problem) {
    problem_ = problem;
  }

  //! Set the parameters the solver manager should use to solve the linear problem.
  void setParameters (const Teuchos::RCP<Teuchos::ParameterList>& params);

  //@}

  //! @name Reset methods
  //@{
  /*! \brief reset the solver manager as specified by the \c ResetType, informs the
   *  solver manager that the solver should prepare for the next call to solve
   *  by resetting certain elements of the iterative solver strategy.
   */
  void reset (const ResetType type) {
    if ((type & Belos::Problem) && ! problem_.is_null ()) {
      problem_->setProblem ();
    }
  }

  //@}
  //! \name Solver application methods
  //@{

  /*! \brief method that performs possibly repeated calls to the underlying linear solver's
   *         iterate() routine until the problem has been solved (as defined by the solver
   *         manager) or the solver manager decides to quit.
   *
   * This method calls LSQRIter::iterate(), which will return either because a
   * specially constructed status test evaluates to ::Passed or an std::exception is thrown.
   *
   * A return from LSQRIter::iterate() signifies that either
   *    - the maximum number of iterations has been exceeded ...  "return ::Unconverged".
   *    - ... or convergence ... "solver manager will return ::Converged"
   * In either case the current solution is in the linear problem
   *
   * \returns ::ReturnType specifying:
   *     - ::Converged: the linear problem was solved to the specification required by the
   *                      solver manager.
   *     - ::Unconverged: the linear problem was not solved to the specification desired by
   *                      the solver manager.
   */
  ReturnType solve();

  //@}
  //! \name Overridden from Teuchos::Describable
  //@{

  //! One-line description of this solver.
  std::string description () const;

  //@}

private:

  //! The linear problem to solve.
  Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;
  //! The output manager.
  Teuchos::RCP<OutputManager<ScalarType> > printer_;
  //! Output stream to which to write status output.
  Teuchos::RCP<std::ostream> outputStream_;

  //! The "master" status test (that includes all status tests).
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
  Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
  Teuchos::RCP<LSQRStatusTest<ScalarType,MV,OP> > convTest_;
  Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;

  //! Current parameter list.
  Teuchos::RCP<Teuchos::ParameterList> params_;

  /// \brief Default parameter list.
  ///
  /// Cached per instance, rather than per class, for more thread
  /// safety.  It's "mutable" because \c getValidParameters() has to
  /// create it if it hasn't been created yet.
  mutable Teuchos::RCP<const Teuchos::ParameterList> validParams_;

  // Current solver input parameters
  MagnitudeType lambda_;
  MagnitudeType relRhsErr_;
  MagnitudeType relMatErr_;
  MagnitudeType condMax_;
  int maxIters_, termIterMax_;
  int verbosity_, outputStyle_, outputFreq_;

  // Terminal solver state values
  int numIters_;
  MagnitudeType matCondNum_;
  MagnitudeType matNorm_;
  MagnitudeType resNorm_;
  MagnitudeType matResNorm_;

  // Timers.
  std::string label_;
  Teuchos::RCP<Teuchos::Time> timerSolve_;

  // Internal state variables.
  bool isSet_;
  bool loaDetected_;
};

template<class ScalarType, class MV, class OP>
LSQRSolMgr<ScalarType,MV,OP,false>::LSQRSolMgr () :
  lambda_ (STM::zero ()),
  relRhsErr_ (Teuchos::as<MagnitudeType> (10) * STM::squareroot (STM::eps ())),
  relMatErr_ (Teuchos::as<MagnitudeType> (10) * STM::squareroot (STM::eps ())),
  condMax_ (STM::one () / STM::eps ()),
  maxIters_ (1000),
  termIterMax_ (1),
  verbosity_ (Belos::Errors),
  outputStyle_ (Belos::General),
  outputFreq_ (-1),
  numIters_ (0),
  matCondNum_ (STM::zero ()),
  matNorm_ (STM::zero ()),
  resNorm_ (STM::zero ()),
  matResNorm_ (STM::zero ()),
  isSet_ (false),
  loaDetected_ (false)
{}

template<class ScalarType, class MV, class OP>
LSQRSolMgr<ScalarType,MV,OP,false>::
LSQRSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >& problem,
            const Teuchos::RCP<Teuchos::ParameterList>& pl) :
  problem_ (problem),
  lambda_ (STM::zero ()),
  relRhsErr_ (Teuchos::as<MagnitudeType> (10) * STM::squareroot (STM::eps ())),
  relMatErr_ (Teuchos::as<MagnitudeType> (10) * STM::squareroot (STM::eps ())),
  condMax_ (STM::one () / STM::eps ()),
  maxIters_ (1000),
  termIterMax_ (1),
  verbosity_ (Belos::Errors),
  outputStyle_ (Belos::General),
  outputFreq_ (-1),
  numIters_ (0),
  matCondNum_ (STM::zero ()),
  matNorm_ (STM::zero ()),
  resNorm_ (STM::zero ()),
  matResNorm_ (STM::zero ()),
  isSet_ (false),
  loaDetected_ (false)
{
  // The linear problem to solve is allowed to be null here.  The user
  // must then set a nonnull linear problem (by calling setProblem())
  // before calling solve().
  //
  // Similarly, users are allowed to set a null parameter list here,
  // but they must first set a nonnull parameter list (by calling
  // setParameters()) before calling solve().
  if (! pl.is_null ()) {
    setParameters (pl);
  }
}


template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
LSQRSolMgr<ScalarType,MV,OP,false>::getValidParameters() const
{
  using Teuchos::ParameterList;
  using Teuchos::parameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;

  // Set all the valid parameters and their default values.
  if (validParams_.is_null ()) {
    // We use Teuchos::as just in case MagnitudeType doesn't have a
    // constructor that takes an int.  Otherwise, we could just write
    // "MagnitudeType(10)".
    const MagnitudeType ten = Teuchos::as<MagnitudeType> (10);
    const MagnitudeType sqrtEps = STM::squareroot (STM::eps());

    const MagnitudeType lambda = STM::zero();
    RCP<std::ostream> outputStream = rcpFromRef (std::cout);
    const MagnitudeType relRhsErr = ten * sqrtEps;
    const MagnitudeType relMatErr = ten * sqrtEps;
    const MagnitudeType condMax = STM::one() / STM::eps();
    const int maxIters = 1000;
    const int termIterMax = 1;
    const int verbosity = Belos::Errors;
    const int outputStyle = Belos::General;
    const int outputFreq = -1;
    const std::string label ("Belos");

    RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
    pl->set ("Output Stream", outputStream, "Teuchos::RCP<std::ostream> "
             "(reference-counted pointer to the output stream) receiving "
             "all solver output");
    pl->set ("Lambda", lambda, "Damping parameter");
    pl->set ("Rel RHS Err", relRhsErr, "Estimates the error in the data "
             "defining the right-hand side");
    pl->set ("Rel Mat Err", relMatErr, "Estimates the error in the data "
             "defining the matrix.");
    pl->set ("Condition Limit", condMax, "Bounds the estimated condition "
             "number of Abar.");
    pl->set ("Maximum Iterations", maxIters, "Maximum number of iterations");
    pl->set ("Term Iter Max", termIterMax, "The number of consecutive "
             "iterations must that satisfy all convergence criteria in order "
             "for LSQR to stop iterating");
    pl->set ("Verbosity", verbosity, "Type(s) of solver information written to "
             "the output stream");
    pl->set ("Output Style", outputStyle, "Style of solver output");
    pl->set ("Output Frequency", outputFreq, "Frequency at which information "
             "is written to the output stream (-1 means \"not at all\")");
    pl->set ("Timer Label", label, "String to use as a prefix for the timer "
             "labels");
    //  pl->set("Restart Timers", restartTimers_);
    pl->set ("Block Size", 1, "Block size parameter (currently, LSQR requires "
             "this must always be 1)");
    validParams_ = pl;
  }
  return validParams_;
}


template<class ScalarType, class MV, class OP>
void
LSQRSolMgr<ScalarType,MV,OP,false>::
setParameters (const Teuchos::RCP<Teuchos::ParameterList>& params)
{
  using Teuchos::isParameterType;
  using Teuchos::getParameter;
  using Teuchos::null;
  using Teuchos::ParameterList;
  using Teuchos::parameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcp_dynamic_cast;
  using Teuchos::rcpFromRef;
  using Teuchos::Time;
  using Teuchos::TimeMonitor;
  using Teuchos::Exceptions::InvalidParameter;
  using Teuchos::Exceptions::InvalidParameterName;
  using Teuchos::Exceptions::InvalidParameterType;

  TEUCHOS_TEST_FOR_EXCEPTION
    (params.is_null (), std::invalid_argument,
     "Belos::LSQRSolMgr::setParameters: The input ParameterList is null.");
  RCP<const ParameterList> defaultParams = getValidParameters ();

  // FIXME (mfh 29 Apr 2015) Our users would like to supply one
  // ParameterList that works for both GMRES and LSQR.  Thus, we want
  // LSQR (the less-used solver) to ignore parameters it doesn't
  // recognize).  For now, therefore, it should not validate, since
  // validation cannot distinguish between misspellings and
  // unrecognized parameters.  (Perhaps Belos should have a central
  // facility for all parameters recognized by some solver in Belos,
  // so we could use that for spell checking.)
  //
  //params->validateParameters (*defaultParams);

  // mfh 29 Apr 2015: The convention in Belos is that the input
  // ParameterList is a "delta" from the current state.  Thus, we
  // don't fill in the input ParameterList with defaults, and we only
  // change the current state if the corresponding parameter was
  // explicitly set in the input ParameterList.  We set up the solver
  // with the default state on construction.

  // Get the damping (regularization) parameter lambda.
  if (params->isParameter ("Lambda")) {
    lambda_ = params->get<MagnitudeType> ("Lambda");
  } else if (params->isParameter ("lambda")) {
    lambda_ = params->get<MagnitudeType> ("lambda");
  }

  // Get the maximum number of iterations.
  if (params->isParameter ("Maximum Iterations")) {
    maxIters_ = params->get<int> ("Maximum Iterations");
  }
  TEUCHOS_TEST_FOR_EXCEPTION
    (maxIters_ < 0, std::invalid_argument, "Belos::LSQRSolMgr::setParameters: "
     "\"Maximum Iterations\" = " << maxIters_ << " < 0.");

  // (Re)set the timer label.
  {
    const std::string newLabel =
      params->isParameter ("Timer Label") ?
      params->get<std::string> ("Timer Label") :
      label_;

    // Update parameter in our list and solver timer
    if (newLabel != label_) {
      label_ = newLabel;
    }

#ifdef BELOS_TEUCHOS_TIME_MONITOR
    const std::string newSolveLabel = (newLabel != "") ?
      (newLabel + ": Belos::LSQRSolMgr total solve time") :
      std::string ("Belos::LSQRSolMgr total solve time");
    if (timerSolve_.is_null ()) {
      // Ask TimeMonitor for a new timer.
      timerSolve_ = TimeMonitor::getNewCounter (newSolveLabel);
    } else {
      // We've already created a timer, but we may have changed its
      // label.  If we did change its name, then we have to forget
      // about the old timer and create a new one with a different
      // name.  This is because Teuchos::Time doesn't give you a way
      // to change a timer's name, once you've created it.  We assume
      // that if the user changed the timer's label, then the user
      // wants to reset the timer's results.
      const std::string oldSolveLabel = timerSolve_->name ();

      if (oldSolveLabel != newSolveLabel) {
        // Tell TimeMonitor to forget about the old timer.
        // TimeMonitor lets you clear timers by name.
        TimeMonitor::clearCounter (oldSolveLabel);
        timerSolve_ = TimeMonitor::getNewCounter (newSolveLabel);
      }
    }
#endif // BELOS_TEUCHOS_TIME_MONITOR
  }

  // Check for a change in verbosity level
  if (params->isParameter ("Verbosity")) {
    int newVerbosity = 0;
    // ParameterList gets confused sometimes about enums.  This
    // ensures that no matter how "Verbosity" was stored -- either an
    // an int, or as a Belos::MsgType enum, we will be able to extract
    // it.  If it was stored as some other type, we let the exception
    // through.
    try {
      newVerbosity = params->get<Belos::MsgType> ("Verbosity");
    } catch (Teuchos::Exceptions::InvalidParameterType&) {
      newVerbosity = params->get<int> ("Verbosity");
    }
    if (newVerbosity != verbosity_) {
      verbosity_ = newVerbosity;
    }
  }

  // (Re)set the output style.
  if (params->isParameter ("Output Style")) {
    outputStyle_ = params->get<int> ("Output Style");
  }

  // Get the output stream for the output manager.
  //
  // In case the output stream can't be read back in, we default to
  // stdout (std::cout), just to ensure reasonable behavior.
  if (params->isParameter ("Output Stream")) {
    outputStream_ = params->get<RCP<std::ostream> > ("Output Stream");
  }
  // We assume that a null output stream indicates that the user
  // doesn't want to print anything, so we replace it with a "black
  // hole" stream that prints nothing sent to it.  (We can't use a
  // null output stream, since the output manager always sends
  // things it wants to print to the output stream.)
  if (outputStream_.is_null ()) {
    outputStream_ = rcp (new Teuchos::oblackholestream ());
  }

  // Get the frequency of solver output.  (For example, -1 means
  // "never," and 1 means "every iteration.")
  if (params->isParameter ("Output Frequency")) {
    outputFreq_ = params->get<int> ("Output Frequency");
  }

  // Create output manager if we need to, using the verbosity level
  // and output stream that we fetched above.  Status tests (i.e.,
  // stopping criteria) need this.
  if (printer_.is_null ()) {
    printer_ = rcp (new OutputManager<ScalarType> (verbosity_, outputStream_));
  } else {
    printer_->setVerbosity (verbosity_);
    printer_->setOStream (outputStream_);
  }

  // Check for condition number limit, number of consecutive passed
  // iterations, relative RHS error, and relative matrix error.
  // Create the LSQR convergence test if necessary.
  {
    if (params->isParameter ("Condition Limit")) {
      condMax_ = params->get<MagnitudeType> ("Condition Limit");
    }
    if (params->isParameter ("Term Iter Max")) {
      termIterMax_ = params->get<int> ("Term Iter Max");
    }
    if (params->isParameter ("Rel RHS Err")) {
      relRhsErr_ = params->get<MagnitudeType> ("Rel RHS Err");
    }
    else if (params->isParameter ("Convergence Tolerance")) {
      // NOTE (mfh 29 Apr 2015) We accept this parameter as an alias
      // for "Rel RHS Err".
      relRhsErr_ = params->get<MagnitudeType> ("Convergence Tolerance");
    }

    if (params->isParameter ("Rel Mat Err")) {
      relMatErr_ = params->get<MagnitudeType> ("Rel Mat Err");
    }

    // Create the LSQR convergence test if it doesn't exist yet.
    // Otherwise, update its parameters.
    if (convTest_.is_null ()) {
      convTest_ =
        rcp (new LSQRStatusTest<ScalarType,MV,OP> (condMax_, termIterMax_,
                                                   relRhsErr_, relMatErr_));
    } else {
      convTest_->setCondLim (condMax_);
      convTest_->setTermIterMax (termIterMax_);
      convTest_->setRelRhsErr (relRhsErr_);
      convTest_->setRelMatErr (relMatErr_);
    }
  }

  // Create the status test for maximum number of iterations if
  // necessary.  Otherwise, update it with the new maximum iteration
  // count.
  if (maxIterTest_.is_null()) {
    maxIterTest_ = rcp (new StatusTestMaxIters<ScalarType,MV,OP> (maxIters_));
  } else {
    maxIterTest_->setMaxIters (maxIters_);
  }

  // The stopping criterion is an OR combination of the test for
  // maximum number of iterations, and the LSQR convergence test.
  // ("OR combination" means that both tests will always be evaluated,
  // as opposed to a SEQ combination.)
  typedef StatusTestCombo<ScalarType,MV,OP> combo_type;
  // If sTest_ is not null, then maxIterTest_ and convTest_ were
  // already constructed on entry to this routine, and sTest_ has
  // their pointers.  Thus, maxIterTest_ and convTest_ have gotten any
  // parameter changes, so we don't need to do anything to sTest_.
  if (sTest_.is_null()) {
    sTest_ = rcp (new combo_type (combo_type::OR, maxIterTest_, convTest_));
  }

  if (outputTest_.is_null ()) {
    // Create the status test output class.
    // This class manages and formats the output from the status test.
    StatusTestOutputFactory<ScalarType,MV,OP> stoFactory (outputStyle_);
    outputTest_ = stoFactory.create (printer_, sTest_, outputFreq_,
                                     Passed + Failed + Undefined);
    // Set the solver string for the output test.
    const std::string solverDesc = " LSQR ";
    outputTest_->setSolverDesc (solverDesc);
  } else {
    // FIXME (mfh 18 Sep 2011) How do we change the output style of
    // outputTest_, without destroying and recreating it?
    outputTest_->setOutputManager (printer_);
    outputTest_->setChild (sTest_);
    outputTest_->setOutputFrequency (outputFreq_);
    // Since outputTest_ can only be created here, I'm assuming that
    // the fourth constructor argument ("printStates") was set
    // correctly on constrution; I don't need to reset it (and I can't
    // set it anyway, given StatusTestOutput's interface).
  }

  // At this point, params is a valid ParameterList.  Now we can
  // "commit" it to our instance's ParameterList.
  params_ = params;

  // Inform the solver manager that the current parameters were set.
  isSet_ = true;
}


template<class ScalarType, class MV, class OP>
Belos::ReturnType
LSQRSolMgr<ScalarType,MV,OP,false>::solve ()
{
  using Teuchos::RCP;
  using Teuchos::rcp;

  // Set the current parameters if they were not set before.  NOTE:
  // This may occur if the user generated the solver manager with the
  // default constructor, but did not set any parameters using
  // setParameters().
  if (! isSet_) {
    this->setParameters (Teuchos::parameterList (* (getValidParameters ())));
  }

  TEUCHOS_TEST_FOR_EXCEPTION
    (problem_.is_null (), LSQRSolMgrLinearProblemFailure,
     "Belos::LSQRSolMgr::solve: The linear problem to solve is null.");
  TEUCHOS_TEST_FOR_EXCEPTION
    (! problem_->isProblemSet (), LSQRSolMgrLinearProblemFailure,
     "Belos::LSQRSolMgr::solve: The linear problem is not ready, "
     "as its setProblem() method has not been called.");
  TEUCHOS_TEST_FOR_EXCEPTION
    (MVT::GetNumberVecs (*(problem_->getRHS ())) != 1,
     LSQRSolMgrBlockSizeFailure, "Belos::LSQRSolMgr::solve: "
     "The current implementation of LSQR only knows how to solve problems "
     "with one right-hand side, but the linear problem to solve has "
     << MVT::GetNumberVecs (* (problem_->getRHS ()))
     << " right-hand sides.");

  // We've validated the LinearProblem instance above.  If any of the
  // StatusTests needed to be initialized using information from the
  // LinearProblem, now would be the time to do so.  (This is true of
  // GMRES, where the residual convergence test(s) to instantiate
  // depend on knowing whether there is a left preconditioner.  This
  // is why GMRES has an "isSTSet_" Boolean member datum, which tells
  // you whether the status tests have been instantiated and are ready
  // for use.

  // test isFlexible might go here.

  // Next the right-hand sides to solve are identified.  Among other things,
  // this enables getCurrLHSVec() to get the current initial guess vector,
  // and getCurrRHSVec() to get the current right-hand side (in Iter).
  std::vector<int> currRHSIdx (1, 0);
  problem_->setLSIndex (currRHSIdx);

  // Reset the status test.
  outputTest_->reset ();

  // Don't assume convergence unless we've verified that the
  // convergence test passed.
  bool isConverged = false;

  // FIXME: Currently we are setting the initial guess to zero, since
  // the solver doesn't yet know how to handle a nonzero initial
  // guess.  This could be fixed by rewriting the solver to work with
  // the residual and a delta.
  //
  // In a least squares problem with a nonzero initial guess, the
  // minimzation problem involves the distance (in a norm depending on
  // the preconditioner) between the solution and the the initial
  // guess.

  ////////////////////////////////////////////////////////////////////
  // Solve the linear problem using LSQR
  ////////////////////////////////////////////////////////////////////

  // Parameter list for the LSQR iteration.
  Teuchos::ParameterList plist;

  // Use the solver manager's "Lambda" parameter to set the
  // iteration's "Lambda" parameter.  We know that the solver
  // manager's parameter list (params_) does indeed contain the
  // "Lambda" parameter, because solve() always ensures that
  // setParameters() has been called.
  plist.set ("Lambda", lambda_);

  typedef LSQRIter<ScalarType,MV,OP> iter_type;
  RCP<iter_type> lsqr_iter =
    rcp (new iter_type (problem_, printer_, outputTest_, plist));
#ifdef BELOS_TEUCHOS_TIME_MONITOR
  Teuchos::TimeMonitor slvtimer (*timerSolve_);
#endif

  // Reset the number of iterations.
  lsqr_iter->resetNumIters ();
  // Reset the number of calls that the status test output knows about.
  outputTest_->resetNumCalls ();
  // Set the new state and initialize the solver.
  LSQRIterationState<ScalarType, MV> newstate;
  lsqr_iter->initializeLSQR (newstate);
  // tell lsqr_iter to iterate
  try {
    lsqr_iter->iterate ();

    // First check for convergence.  If we didn't converge, then check
    // whether we reached the maximum number of iterations.  If
    // neither of those happened, there must have been a bug.
    if (convTest_->getStatus () == Belos::Passed) {
      isConverged = true;
    } else if (maxIterTest_->getStatus () == Belos::Passed) {
      isConverged = false;
    } else {
      TEUCHOS_TEST_FOR_EXCEPTION
        (true, std::logic_error, "Belos::LSQRSolMgr::solve: "
         "LSQRIteration::iterate returned without either the convergence test "
         "or the maximum iteration count test passing.  "
         "Please report this bug to the Belos developers.");
    }
  } catch (const std::exception& e) {
    printer_->stream(Belos::Errors)
      << "Error! Caught std::exception in LSQRIter::iterate at iteration "
      << lsqr_iter->getNumIters () << std::endl << e.what () << std::endl;
    throw;
  }

  // identify current linear system as solved LinearProblem
  problem_->setCurrLS();
  // print final summary
  sTest_->print (printer_->stream (Belos::FinalSummary));

  // Print timing information, if the corresponding compile-time and
  // run-time options are enabled.
#ifdef BELOS_TEUCHOS_TIME_MONITOR
  // Calling summarize() can be expensive, so don't call unless the
  // user wants to print out timing details.  summarize() will do all
  // the work even if it's passed a "black hole" output stream.
  if (verbosity_ & TimingDetails)
    Teuchos::TimeMonitor::summarize (printer_->stream (Belos::TimingDetails));
#endif // BELOS_TEUCHOS_TIME_MONITOR

  // A posteriori solve information
  numIters_ = maxIterTest_->getNumIters();
  matCondNum_ = convTest_->getMatCondNum();
  matNorm_ = convTest_->getMatNorm();
  resNorm_ = convTest_->getResidNorm();
  matResNorm_ = convTest_->getLSResidNorm();

  if (! isConverged) {
    return Belos::Unconverged;
  } else {
    return Belos::Converged;
  }
}

// LSQRSolMgr requires the solver manager to return an eponymous std::string.
template<class ScalarType, class MV, class OP>
std::string LSQRSolMgr<ScalarType,MV,OP,false>::description () const
{
  std::ostringstream oss;
  oss << "LSQRSolMgr<...," << STS::name () << ">";
  oss << "{";
  oss << "Lambda: " << lambda_;
  oss << ", condition number limit: " << condMax_;
  oss << ", relative RHS Error: " << relRhsErr_;
  oss << ", relative Matrix Error: " << relMatErr_;
  oss << ", maximum number of iterations: " << maxIters_;
  oss << ", termIterMax: " << termIterMax_;
  oss << "}";
  return oss.str ();
}

} // end Belos namespace

#endif /* BELOS_LSQR_SOLMGR_HPP */