/usr/include/trilinos/AnasaziOrthoManager.hpp is in libtrilinos-anasazi-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziOrthoManager.hpp
\brief Templated virtual class for providing orthogonalization/orthonormalization methods.
*/
#ifndef ANASAZI_ORTHOMANAGER_HPP
#define ANASAZI_ORTHOMANAGER_HPP
/*! \class Anasazi::OrthoManager
\brief Anasazi's templated virtual class for providing routines for orthogonalization and
orthonormalization of multivectors.
This class defines concepts of orthogonality through the definition of an
inner product. It also provides computational routines for orthogonalization.
A concrete implementation of this class is necessary. The user can create
their own implementation if those supplied are not suitable for their needs.
\author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_Array.hpp"
namespace Anasazi {
//! @name OrthoManager Exceptions
//@{
/** \brief Exception thrown to signal error in an orthogonalization manager method.
*/
class OrthoError : public AnasaziError
{public: OrthoError(const std::string& what_arg) : AnasaziError(what_arg) {}};
//@}
template <class ScalarType, class MV>
class OrthoManager {
public:
//! @name Constructor/Destructor
//@{
//! Default constructor.
OrthoManager() {};
//! Destructor.
virtual ~OrthoManager() {};
//@}
//! @name Orthogonalization methods
//@{
/*! \brief Provides the inner product defining the orthogonality concepts.
All concepts of orthogonality discussed in this class are defined with respect to this inner product.
\note This is potentially different from MultiVecTraits::MvTransMv(). For example, it is customary in many
eigensolvers to exploit a mass matrix \c M for the inner product: \f$x^HMx\f$.
@param Z [out] <tt>Z(i,j)</tt> contains the inner product of <tt>X[i]</tt> and <tt>Y[i]</tt>:
\f[
Z(i,j) = \langle X[i], Y[i] \rangle
\f]
*/
virtual void innerProd( const MV &X, const MV &Y, Teuchos::SerialDenseMatrix<int,ScalarType>& Z ) const = 0;
/*! \brief Provides the norm induced by innerProd().
*
* This computes the norm for each column of a multivector. This is the norm induced by innerProd():
* \f[ \|x\| = \sqrt{\langle x, x \rangle} \f]
*
@param normvec [out] Vector of norms, whose \c i-th entry corresponds to the \c i-th column of \c X
\pre
<ul>
<li><tt>normvec.size() == GetNumberVecs(X)</tt>
</ul>
*/
virtual void norm( const MV& X, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &normvec ) const = 0;
/*! \brief Given a list of mutually orthogonal and internally orthonormal bases \c Q, this method
* projects a multivector \c X onto the space orthogonal to the individual <tt>Q[i]</tt>,
* optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
* to the inner product innerProd().
*
* After calling this routine, \c X will be orthogonal to each of the <tt>Q[i]</tt>.
*
@param X [in/out] The multivector to be modified.<br>
On output, the columns of \c X will be orthogonal to each <tt>Q[i]</tt>, satisfying
\f[
\langle Q[i], X_{out} \rangle = 0
\f]
Also,
\f[
X_{out} = X_{in} - \sum_i Q[i] \langle Q[i], X_{in} \rangle
\f]
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against, satisfying
\f[
\langle Q[i], Q[j] \rangle = I \quad\textrm{if}\quad i=j
\f]
and
\f[
\langle Q[i], Q[j] \rangle = 0 \quad\textrm{if}\quad i \neq j\ .
\f]
@param C [out] The coefficients of \c X in the bases <tt>Q[i]</tt>. If <tt>C[i]</tt> is a non-null pointer
and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
routine will be stored in the matrix <tt>C[i]</tt>, similar to calling
\code
innerProd( Q[i], X, C[i] );
\endcode
If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
inconsistent with \c X and \c <tt>Q[i]</tt>, then a std::invalid_argument
exception will be thrown.<br>
Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null pointer,
the caller will not have access to the computed coefficients.
*/
virtual void project (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null))
) const = 0;
/*! \brief This method takes a multivector \c X and attempts to compute a basis
* for \f$colspan(X)\f$. This basis is orthonormal with respect to innerProd().
*
* This routine returns an integer \c rank stating the rank of the computed
* basis. If \c X does not have full rank and the normalize() routine does
* not attempt to augment the subspace, then \c rank may be smaller than
* the number of columns in \c X. In this case, only the first \c rank
* columns of output \c X and first \c rank rows of \c B will be valid.
*
@param X [in/out] The multivector to be modified.<br>
On output, the first \c rank columns of \c X satisfy
\f[
\langle X[i], X[j] \rangle = \delta_{ij}\ .
\f]
Also,
\f[
X_{in}(1:m,1:n) = X_{out}(1:m,1:rank) B(1:rank,1:n)\ ,
\f]
where \c m is the number of rows in \c X and \c n is the number of
columns in \c X.
@param B [out] The coefficients of the original \c X with respect to the
computed basis. If \c B is a non-null pointer and \c B matches the
dimensions of \c B, then the coefficients computed during the
orthogonalization routine will be stored in \c B, similar to calling
\code
innerProd( X_{out}, X_{in}, B );
\endcode
If \c B points to a Teuchos::SerialDenseMatrix with
size inconsistent with \c X, then a std::invalid_argument exception will
be thrown.<br>
Otherwise, if \c B is null, the caller will not have access
to the computed coefficients.<br>
\note This matrix is not necessarily triangular (as in a QR factorization);
see the documentation of specific orthogonalization managers.
@return Rank of the basis computed by this method, less than or equal to
the number of columns in \c X. This specifies how many columns in the
returned \c X and rows in the returned \c B are valid.
*/
virtual int normalize (
MV &X,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null) const = 0;
/*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
*
* This routine returns an integer \c rank stating the rank of the
* computed basis. If the subspace \f$colspan(X) - \sum_i colspan(Q[i])\f$
* does not have dimension as large as the number of columns of \c X and
* the orthogonalization manager does not attempt to augment the subspace,
* then \c rank may be smaller than the number of columns of \c X. In this
* case, only the first \c rank columns of output \c X and first \c rank
* rows of \c B will be valid.
*
* \note This routine guarantees both the orthogonality of the returned
* basis against the <tt>Q[i]</tt> as well as the orthonormality of the
* returned basis. Therefore, this method is not necessarily equivalent to
* calling project() followed by a call to normalize(); see the
* documentation for specific orthogonalization managers.
*
@param X [in/out]
On output, the first \c rank columns of \c X satisfy
\f[
\langle X[i], X[j] \rangle = \delta_{ij} \quad \textrm{and} \quad \langle X, Q[i] \rangle = 0\ .
\f]
Also,
\f[
X_{in}(1:m,1:n) = X_{out}(1:m,1:rank) B(1:rank,1:n) + \sum_i Q[i] C[i]
\f]
where \c m is the number of rows in \c X and \c n is the number of columns in \c X.
@param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against, satisfying
\f[
\langle Q[i], Q[j] \rangle = I \quad\textrm{if}\quad i=j
\f]
and
\f[
\langle Q[i], Q[j] \rangle = 0 \quad\textrm{if}\quad i \neq j\ .
\f]
@param C [out] The coefficients of \c X in the <tt>Q[i]</tt>. If <tt>C[i]</tt> is a non-null pointer
and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
routine will be stored in the matrix <tt>C[i]</tt>, similar to calling
\code
innerProd( Q[i], X, C[i] );
\endcode
If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
inconsistent with \c X and \c <tt>Q[i]</tt>, then a std::invalid_argument
exception will be thrown.<br>
Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null pointer,
the caller will not have access to the computed coefficients.
@param B [out] The coefficients of the original \c X with respect to the computed basis. If \c B is a non-null pointer and \c B matches the dimensions of \c B, then the
coefficients computed during the orthogonalization routine will be stored in \c B, similar to calling
\code
innerProd( Sout, Sin, B );
\endcode
If \c B points to a Teuchos::SerialDenseMatrix with size inconsistent with
\c X, then a std::invalid_argument exception will be thrown.<br>
Otherwise, if \c B is null, the caller will not have access to the computed
coefficients.<br>
\note This matrix is not necessarily triangular (as in a QR
factorization); see the documentation of specific orthogonalization
managers.
@return Rank of the basis computed by this method, less than or equal to
the number of columns in \c X. This specifies how many columns in the
returned \c X and rows in the returned \c B are valid.
*/
virtual int projectAndNormalize (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null
) const = 0;
//@}
//! @name Error methods
//@{
/*! \brief This method computes the error in orthonormality of a multivector.
*
* This method return some measure of \f$\| \langle X, X \rangle - I \| \f$. <br>
* See the documentation of specific orthogonalization managers.
*/
virtual typename Teuchos::ScalarTraits< ScalarType >::magnitudeType orthonormError(const MV &X) const = 0;
/*! \brief This method computes the error in orthogonality of two multivectors.
*
* This method return some measure of \f$\| \langle X1, X2 \rangle \| \f$. <br>
* See the documentation of specific orthogonalization managers.
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType orthogError(const MV &X1, const MV &X2) const = 0;
//@}
};
} // end of Anasazi namespace
#endif
// end of file AnasaziOrthoManager.hpp
|