This file is indexed.

/usr/include/trilinos/klu2_analyze_given.hpp is in libtrilinos-amesos2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/* ========================================================================== */
/* === klu_analyze_given ==================================================== */
/* ========================================================================== */
// @HEADER
// ***********************************************************************
//
//                   KLU2: A Direct Linear Solver package
//                    Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER

/* Given an input permutation P and Q, create the Symbolic object.  BTF can
 * be done to modify the user's P and Q (does not perform the max transversal;
 * just finds the strongly-connected components). */

#ifndef KLU2_ANALYZE_GIVEN_HPP
#define KLU2_ANALYZE_GIVEN_HPP

#include "klu2_internal.h"
#include "klu2_memory.hpp"

/* ========================================================================== */
/* === klu_alloc_symbolic =================================================== */
/* ========================================================================== */

/* Allocate Symbolic object, and check input matrix.  Not user callable. */

template <typename Entry, typename Int>
KLU_symbolic<Entry, Int> *KLU_alloc_symbolic
(
    Int n,
    Int *Ap,
    Int *Ai,
    KLU_common<Entry, Int> *Common
)
{
    KLU_symbolic<Entry, Int> *Symbolic ;
    Int *P, *Q, *R ;
    double *Lnz ;
    Int nz, i, j, p, pend ;

    if (Common == NULL)
    {
        return (NULL) ;
    }
    Common->status = KLU_OK ;

    /* A is n-by-n, with n > 0.  Ap [0] = 0 and nz = Ap [n] >= 0 required.
     * Ap [j] <= Ap [j+1] must hold for all j = 0 to n-1.  Row indices in Ai
     * must be in the range 0 to n-1, and no duplicate entries can be present.
     * The list of row indices in each column of A need not be sorted.
     */

    if (n <= 0 || Ap == NULL || Ai == NULL)
    {
        /* Ap and Ai must be present, and n must be > 0 */
        Common->status = KLU_INVALID ;
        return (NULL) ;
    }

    nz = Ap [n] ;
    if (Ap [0] != 0 || nz < 0)
    {
        /* nz must be >= 0 and Ap [0] must equal zero */
        Common->status = KLU_INVALID ;
        return (NULL) ;
    }

    for (j = 0 ; j < n ; j++)
    {
        if (Ap [j] > Ap [j+1])
        {
            /* column pointers must be non-decreasing */
            Common->status = KLU_INVALID ;
            return (NULL) ;
        }
    }
    P = (Int *) KLU_malloc (n, sizeof (Int), Common) ;
    if (Common->status < KLU_OK)
    {
        /* out of memory */
        Common->status = KLU_OUT_OF_MEMORY ;
        return (NULL) ;
    }
    for (i = 0 ; i < n ; i++)
    {
        P [i] = EMPTY ;
    }
    for (j = 0 ; j < n ; j++)
    {
        pend = Ap [j+1] ;
        for (p = Ap [j] ; p < pend ; p++)
        {
            i = Ai [p] ;
            if (i < 0 || i >= n || P [i] == j)
            {
                /* row index out of range, or duplicate entry */
                KLU_free (P, n, sizeof (Int), Common) ;
                Common->status = KLU_INVALID ;
                return (NULL) ;
            }
            /* flag row i as appearing in column j */
            P [i] = j ;
        }
    }

    /* ---------------------------------------------------------------------- */
    /* allocate the Symbolic object */
    /* ---------------------------------------------------------------------- */

    Symbolic = (KLU_symbolic<Entry, Int> *) KLU_malloc (sizeof (KLU_symbolic<Entry, Int>), 1, Common) ;
    if (Common->status < KLU_OK)
    {
        /* out of memory */
        KLU_free (P, n, sizeof (Int), Common) ;
        Common->status = KLU_OUT_OF_MEMORY ;
        return (NULL) ;
    }

    Q = (Int *) KLU_malloc (n, sizeof (Int), Common) ;
    R = (Int *) KLU_malloc (n+1, sizeof (Int), Common) ;
    Lnz = (double *) KLU_malloc (n, sizeof (double), Common) ;

    Symbolic->n = n ;
    Symbolic->nz = nz ;
    Symbolic->P = P ;
    Symbolic->Q = Q ;
    Symbolic->R = R ;
    Symbolic->Lnz = Lnz ;

    if (Common->status < KLU_OK)
    {
        /* out of memory */
        KLU_free_symbolic (&Symbolic, Common) ;
        Common->status = KLU_OUT_OF_MEMORY ;
        return (NULL) ;
    }

    return (Symbolic) ;
}


/* ========================================================================== */
/* === KLU_analyze_given ==================================================== */
/* ========================================================================== */

template <typename Entry, typename Int>
KLU_symbolic<Entry, Int> *KLU_analyze_given     /* returns NULL if error, or a valid
                                       KLU_symbolic object if successful */
(
    /* inputs, not modified */
    Int n,              /* A is n-by-n */
    Int Ap [ ],         /* size n+1, column pointers */
    Int Ai [ ],         /* size nz, row indices */
    Int Puser [ ],      /* size n, user's row permutation (may be NULL) */
    Int Quser [ ],      /* size n, user's column permutation (may be NULL) */
    /* -------------------- */
    KLU_common<Entry, Int> *Common
)
{
    KLU_symbolic<Entry, Int> *Symbolic ;
    double *Lnz ;
    Int nblocks, nz, block, maxblock, *P, *Q, *R, nzoff, p, pend, do_btf, k ;

    /* ---------------------------------------------------------------------- */
    /* determine if input matrix is valid, and get # of nonzeros */
    /* ---------------------------------------------------------------------- */

    Symbolic = KLU_alloc_symbolic (n, Ap, Ai, Common) ;
    if (Symbolic == NULL)
    {
        return (NULL) ;
    }
    P = Symbolic->P ;
    Q = Symbolic->Q ;
    R = Symbolic->R ;
    Lnz = Symbolic->Lnz ;
    nz = Symbolic->nz ;

    /* ---------------------------------------------------------------------- */
    /* Q = Quser, or identity if Quser is NULL */
    /* ---------------------------------------------------------------------- */

    if (Quser == (Int *) NULL)
    {
        for (k = 0 ; k < n ; k++)
        {
            Q [k] = k ;
        }
    }
    else
    {
        for (k = 0 ; k < n ; k++)
        {
            Q [k] = Quser [k] ;
        }
    }

    /* ---------------------------------------------------------------------- */
    /* get the control parameters for BTF and ordering method */
    /* ---------------------------------------------------------------------- */

    do_btf = Common->btf ;
    do_btf = (do_btf) ? TRUE : FALSE ;
    Symbolic->ordering = 2 ;
    Symbolic->do_btf = do_btf ;

    /* ---------------------------------------------------------------------- */
    /* find the block triangular form, if requested */
    /* ---------------------------------------------------------------------- */

    if (do_btf)
    {

        /* ------------------------------------------------------------------ */
        /* get workspace for BTF_strongcomp */
        /* ------------------------------------------------------------------ */

        Int *Pinv, *Work, *Bi, k1, k2, nk, oldcol ;

        Work = (Int *) KLU_malloc (4*n, sizeof (Int), Common) ;
        Pinv = (Int *) KLU_malloc (n, sizeof (Int), Common) ;
        if (Puser != (Int *) NULL)
        {
            Bi = (Int *) KLU_malloc (nz+1, sizeof (Int), Common) ;
        }
        else
        {
            Bi = Ai ;
        }

        if (Common->status < KLU_OK)
        {
            /* out of memory */
            KLU_free (Work, 4*n, sizeof (Int), Common) ;
            KLU_free (Pinv, n, sizeof (Int), Common) ;
            if (Puser != (Int *) NULL)
            {
                KLU_free (Bi, nz+1, sizeof (Int), Common) ;
            }
            KLU_free_symbolic (&Symbolic, Common) ;
            Common->status = KLU_OUT_OF_MEMORY ;
            return (NULL) ;
        }

        /* ------------------------------------------------------------------ */
        /* B = Puser * A */
        /* ------------------------------------------------------------------ */

        if (Puser != (Int *) NULL)
        {
            for (k = 0 ; k < n ; k++)
            {
                Pinv [Puser [k]] = k ;
            }
            for (p = 0 ; p < nz ; p++)
            {
                Bi [p] = Pinv [Ai [p]] ;
            }
        }

        /* ------------------------------------------------------------------ */
        /* find the strongly-connected components */
        /* ------------------------------------------------------------------ */

        /* TODO : Correct version of BTF */
        /* modifies Q, and determines P and R */
        /*nblocks = BTF_strongcomp (n, Ap, Bi, Q, P, R, Work) ;*/
        nblocks = KLU_OrdinalTraits<Int>::btf_strongcomp (n, Ap, Bi, Q, P, R, 
                    Work) ;

        /* ------------------------------------------------------------------ */
        /* P = P * Puser */
        /* ------------------------------------------------------------------ */

        if (Puser != (Int *) NULL)
        {
            for (k = 0 ; k < n ; k++)
            {
                Work [k] = Puser [P [k]] ;
            }
            for (k = 0 ; k < n ; k++)
            {
                P [k] = Work [k] ;
            }
        }

        /* ------------------------------------------------------------------ */
        /* Pinv = inverse of P */
        /* ------------------------------------------------------------------ */

        for (k = 0 ; k < n ; k++)
        {
            Pinv [P [k]] = k ;
        }

        /* ------------------------------------------------------------------ */
        /* analyze each block */
        /* ------------------------------------------------------------------ */

        nzoff = 0 ;         /* nz in off-diagonal part */
        maxblock = 1 ;      /* size of the largest block */

        for (block = 0 ; block < nblocks ; block++)
        {

            /* -------------------------------------------------------------- */
            /* the block is from rows/columns k1 to k2-1 */
            /* -------------------------------------------------------------- */

            k1 = R [block] ;
            k2 = R [block+1] ;
            nk = k2 - k1 ;
            PRINTF (("BLOCK %d, k1 %d k2-1 %d nk %d\n", block, k1, k2-1, nk)) ;
            maxblock = MAX (maxblock, nk) ;

            /* -------------------------------------------------------------- */
            /* scan the kth block, C */
            /* -------------------------------------------------------------- */

            for (k = k1 ; k < k2 ; k++)
            {
                oldcol = Q [k] ;
                pend = Ap [oldcol+1] ;
                for (p = Ap [oldcol] ; p < pend ; p++)
                {
                    if (Pinv [Ai [p]] < k1)
                    {
                        nzoff++ ;
                    }
                }
            }

            /* fill-in not estimated */
            Lnz [block] = EMPTY ;
        }

        /* ------------------------------------------------------------------ */
        /* free all workspace */
        /* ------------------------------------------------------------------ */

        KLU_free (Work, 4*n, sizeof (Int), Common) ;
        KLU_free (Pinv, n, sizeof (Int), Common) ;
        if (Puser != (Int *) NULL)
        {
            KLU_free (Bi, nz+1, sizeof (Int), Common) ;
        }

    }
    else
    {

        /* ------------------------------------------------------------------ */
        /* BTF not requested */
        /* ------------------------------------------------------------------ */

        nzoff = 0 ;
        nblocks = 1 ;
        maxblock = n ;
        R [0] = 0 ;
        R [1] = n ;
        Lnz [0] = EMPTY ;

        /* ------------------------------------------------------------------ */
        /* P = Puser, or identity if Puser is NULL */
        /* ------------------------------------------------------------------ */

        for (k = 0 ; k < n ; k++)
        {
            P [k] = (Puser == NULL) ? k : Puser [k] ;
        }
    }

    /* ---------------------------------------------------------------------- */
    /* return the symbolic object */
    /* ---------------------------------------------------------------------- */

    Symbolic->nblocks = nblocks ;
    Symbolic->maxblock = maxblock ;
    Symbolic->lnz = EMPTY ;
    Symbolic->unz = EMPTY ;
    Symbolic->nzoff = nzoff ;

    return (Symbolic) ;
}

#endif /* KLU2_ANALYZE_GIVEN_HPP */