/usr/include/simgrid/kernel/future.hpp is in libsimgrid-dev 3.14.159-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | /* Copyright (c) 2016. The SimGrid Team.
* All rights reserved. */
/* This program is free software; you can redistribute it and/or modify it
* under the terms of the license (GNU LGPL) which comes with this package. */
#ifndef SIMGRID_KERNEL_FUTURE_HPP
#define SIMGRID_KERNEL_FUTURE_HPP
#include <functional>
#include <future>
#include <memory>
#include <utility>
#include <type_traits>
#include <boost/optional.hpp>
#include <xbt/base.h>
#include <xbt/functional.hpp>
#include <xbt/future.hpp>
namespace simgrid {
namespace kernel {
// There are the public classes:
template<class T> class Future;
template<class T> class Promise;
// Those are implementation details:
enum class FutureStatus;
template<class T> class FutureState;
enum class FutureStatus {
not_ready,
ready,
done,
};
template<class T>
struct is_future : std::false_type {};
template<class T>
struct is_future<Future<T>> : std::true_type {};
/** Bases stuff for all @ref simgrid::kernel::FutureState<T> */
class FutureStateBase {
public:
// No copy/move:
FutureStateBase(FutureStateBase const&) = delete;
FutureStateBase& operator=(FutureStateBase const&) = delete;
XBT_PUBLIC(void) schedule(simgrid::xbt::Task<void()>&& job);
void set_exception(std::exception_ptr exception)
{
xbt_assert(exception_ == nullptr);
if (status_ != FutureStatus::not_ready)
throw std::future_error(std::future_errc::promise_already_satisfied);
exception_ = std::move(exception);
this->set_ready();
}
void set_continuation(simgrid::xbt::Task<void()>&& continuation)
{
xbt_assert(!continuation_);
switch (status_) {
case FutureStatus::done:
// This is not supposed to happen if continuation is set
// via the Promise:
xbt_die("Set continuation on finished future");
break;
case FutureStatus::ready:
// The future is ready, execute the continuation directly.
// We might execute it from the event loop instead:
schedule(std::move(continuation));
break;
case FutureStatus::not_ready:
// The future is not ready so we mast keep the continuation for
// executing it later:
continuation_ = std::move(continuation);
break;
default:
DIE_IMPOSSIBLE;
}
}
FutureStatus get_status() const
{
return status_;
}
bool is_ready() const
{
return status_ == FutureStatus::ready;
}
protected:
FutureStateBase() = default;
~FutureStateBase() = default;
/** Set the future as ready and trigger the continuation */
void set_ready()
{
status_ = FutureStatus::ready;
if (continuation_) {
// We unregister the continuation before executing it.
// We need to do this becase the current implementation of the
// continuation has a shared_ptr to the FutureState.
auto continuation = std::move(continuation_);
this->schedule(std::move(continuation));
}
}
/** Set the future as done and raise an exception if any
*
* This does half the job of `.get()`.
**/
void resolve()
{
if (status_ != FutureStatus::ready)
xbt_die("Deadlock: this future is not ready");
status_ = FutureStatus::done;
if (exception_) {
std::exception_ptr exception = std::move(exception_);
exception_ = nullptr;
std::rethrow_exception(std::move(exception));
}
}
private:
FutureStatus status_ = FutureStatus::not_ready;
std::exception_ptr exception_;
simgrid::xbt::Task<void()> continuation_;
};
/** Shared state for future and promises
*
* You are not expected to use them directly but to create them
* implicitely through a @ref simgrid::kernel::Promise.
* Alternatively kernel operations could inherit or contain FutureState
* if they are managed with @ref std::shared_ptr.
**/
template<class T>
class FutureState : public FutureStateBase {
public:
void set_value(T value)
{
if (this->get_status() != FutureStatus::not_ready)
throw std::future_error(std::future_errc::promise_already_satisfied);
value_ = std::move(value);
this->set_ready();
}
T get()
{
this->resolve();
xbt_assert(this->value_);
auto result = std::move(this->value_.get());
this->value_ = boost::optional<T>();
return std::move(result);
}
private:
boost::optional<T> value_;
};
template<class T>
class FutureState<T&> : public FutureStateBase {
public:
void set_value(T& value)
{
if (this->get_status() != FutureStatus::not_ready)
throw std::future_error(std::future_errc::promise_already_satisfied);
value_ = &value;
this->set_ready();
}
T& get()
{
this->resolve();
xbt_assert(this->value_);
T* result = value_;
value_ = nullptr;
return *value_;
}
private:
T* value_ = nullptr;
};
template<>
class FutureState<void> : public FutureStateBase {
public:
void set_value()
{
if (this->get_status() != FutureStatus::not_ready)
throw std::future_error(std::future_errc::promise_already_satisfied);
this->set_ready();
}
void get()
{
this->resolve();
}
};
template<class T>
void bindPromise(Promise<T> promise, Future<T> future)
{
struct PromiseBinder {
public:
PromiseBinder(Promise<T> promise) : promise_(std::move(promise)) {}
void operator()(Future<T> future)
{
simgrid::xbt::setPromise(promise_, future);
}
private:
Promise<T> promise_;
};
future.then_(PromiseBinder(std::move(promise)));
}
template<class T> Future<T> unwrapFuture(Future<Future<T>> future);
/** Result of some (probably) asynchronous operation in the SimGrid kernel
*
* @ref simgrid::simix::Future and @ref simgrid::simix::Future provide an
* abstration for asynchronous stuff happening in the SimGrid kernel. They
* are based on C++1z futures.
*
* The future represents a value which will be available at some point when this
* asynchronous operaiont is finished. Alternatively, if this operations fails,
* the result of the operation might be an exception.
*
* As the operation is possibly no terminated yet, we cannot get the result
* yet. Moreover, as we cannot block in the SimGrid kernel we cannot wait for
* it. However, we can attach some code/callback/continuation which will be
* executed when the operation terminates.
*
* Example of the API (`simgrid::kernel::createProcess` does not exist):
* <pre>
* // Create a new process using the Worker code, this process returns
* // a std::string:
* simgrid::kernel::Future<std::string> future =
* simgrid::kernel::createProcess("worker42", host, Worker(42));
* // At this point, we just created the process so the result is not available.
* // However, we can attach some work do be done with this result:
* future.then([](simgrid::kernel::Future<std::string> result) {
* // This code is called when the operation is completed so the result is
* // available:
* try {
* // Try to get value, this might throw an exception if the operation
* // failed (such as an exception throwed by the worker process):
* std::string value = result.get();
* XBT_INFO("Value: %s", value.c_str());
* }
* catch(std::exception& e) {
* // This is an exception from the asynchronous operation:
* XBT_INFO("Error: %e", e.what());
* }
* );
* </pre>
*
* This is based on C++1z @ref std::future but with some differences:
*
* * there is no thread synchronization (atomic, mutex, condition variable,
* etc.) because everything happens in the SimGrid event loop;
*
* * it is purely asynchronous, you are expected to use `.then()`;
*
* * inside the `.then()`, `.get()` can be used;
*
* * `.get()` can only be used when `.is_ready()` (as everything happens in
* a single-thread, the future would be guaranted to deadlock if `.get()`
* is called when the future is not ready);
*
* * there is no future chaining support for now (`.then().then()`);
*
* * there is no sharing (`shared_future`) for now.
*/
template<class T>
class Future {
public:
Future() = default;
Future(std::shared_ptr<FutureState<T>> state): state_(std::move(state)) {}
// Move type:
Future(Future&) = delete;
Future& operator=(Future&) = delete;
Future(Future&& that) : state_(std::move(that.state_)) {}
Future& operator=(Future&& that)
{
state_ = std::move(that.state_);
return *this;
}
/** Whether the future is valid:.
*
* A future which as been used (`.then` of `.get`) becomes invalid.
*
* We can use `.then` on a valid future.
*/
bool valid() const
{
return state_ != nullptr;
}
/** Whether the future is ready
*
* A future is ready when it has an associated value or exception.
*
* We can use `.get()` on ready futures.
**/
bool is_ready() const
{
return state_ != nullptr && state_->is_ready();
}
/** Attach a continuation to this future
*
* This is like .then() but avoid the creation of a new future.
*/
template<class F>
void then_(F continuation)
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
// Give shared-ownership to the continuation:
auto state = std::move(state_);
state->set_continuation(simgrid::xbt::makeTask(
std::move(continuation), state));
}
/** Attach a continuation to this future
*
* This version never does future unwrapping.
*/
template<class F>
auto thenNoUnwrap(F continuation)
-> Future<decltype(continuation(std::move(*this)))>
{
typedef decltype(continuation(std::move(*this))) R;
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
auto state = std::move(state_);
// Create a new future...
Promise<R> promise;
Future<R> future = promise.get_future();
// ...and when the current future is ready...
state->set_continuation(simgrid::xbt::makeTask(
[](Promise<R> promise, std::shared_ptr<FutureState<T>> state, F continuation) {
// ...set the new future value by running the continuation.
Future<T> future(std::move(state));
simgrid::xbt::fulfillPromise(promise,[&]{
return continuation(std::move(future));
});
},
std::move(promise), state, std::move(continuation)));
return std::move(future);
}
/** Attach a continuation to this future
*
* The future must be valid in order to make this call.
* The continuation is executed when the future becomes ready.
* The future becomes invalid after this call.
*
* @param continuation This function is called with a ready future
* the future is ready
* @exception std::future_error no state is associated with the future
*/
template<class F>
auto then(F continuation)
-> typename std::enable_if<
!is_future<decltype(continuation(std::move(*this)))>::value,
Future<decltype(continuation(std::move(*this)))>
>::type
{
return this->thenNoUnwrap(std::move(continuation));
}
/** Attach a continuation to this future (future chaining) */
template<class F>
auto then(F continuation)
-> typename std::enable_if<
is_future<decltype(continuation(std::move(*this)))>::value,
decltype(continuation(std::move(*this)))
>::type
{
return unwrapFuture(this->thenNoUnwap(std::move(continuation)));
}
/** Get the value from the future
*
* The future must be valid and ready in order to make this call.
* @ref std::future blocks when the future is not ready but we are
* completely single-threaded so blocking would be a deadlock.
* After the call, the future becomes invalid.
*
* @return value of the future
* @exception any Exception from the future
* @exception std::future_error no state is associated with the future
*/
T get()
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
std::shared_ptr<FutureState<T>> state = std::move(state_);
return state->get();
}
private:
std::shared_ptr<FutureState<T>> state_;
};
template<class T>
Future<T> unwrapFuture(Future<Future<T>> future)
{
Promise<T> promise;
Future<T> result = promise.get_future();
bindPromise(std::move(promise), std::move(future));
return std::move(result);
}
/** Producer side of a @ref simgrid::kernel::Future
*
* A @ref Promise is connected to some `Future` and can be used to
* set its result.
*
* Similar to @ref std::promise
*
* <code>
* // Create a promise and a future:
* auto promise = std::make_shared<simgrid::kernel::Promise<T>>();
* auto future = promise->get_future();
*
* SIMIX_timer_set(date, [promise] {
* try {
* int value = compute_the_value();
* if (value < 0)
* throw std::logic_error("Bad value");
* // Whenever the operation is completed, we set the value
* // for the future:
* promise.set_value(value);
* }
* catch (...) {
* // If an error occured, we can set an exception which
* // will be throwed buy future.get():
* promise.set_exception(std::current_exception());
* }
* });
*
* // Return the future to the caller:
* return future;
* </code>
**/
template<class T>
class Promise {
public:
Promise() : state_(std::make_shared<FutureState<T>>()) {}
Promise(std::shared_ptr<FutureState<T>> state) : state_(std::move(state)) {}
// Move type
Promise(Promise const&) = delete;
Promise& operator=(Promise const&) = delete;
Promise(Promise&& that) :
state_(std::move(that.state_)), future_get_(that.future_get_)
{
that.future_get_ = false;
}
Promise& operator=(Promise&& that)
{
this->state_ = std::move(that.state_);
this->future_get_ = that.future_get_;
that.future_get_ = false;
return *this;
}
Future<T> get_future()
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
if (future_get_)
throw std::future_error(std::future_errc::future_already_retrieved);
future_get_ = true;
return Future<T>(state_);
}
void set_value(T value)
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
state_->set_value(std::move(value));
}
void set_exception(std::exception_ptr exception)
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
state_->set_exception(std::move(exception));
}
~Promise()
{
if (state_ && state_->get_status() == FutureStatus::not_ready)
state_->set_exception(std::make_exception_ptr(
std::future_error(std::future_errc::broken_promise)));
}
private:
std::shared_ptr<FutureState<T>> state_;
bool future_get_ = false;
};
template<>
class Promise<void> {
public:
Promise() : state_(std::make_shared<FutureState<void>>()) {}
Promise(std::shared_ptr<FutureState<void>> state) : state_(std::move(state)) {}
~Promise()
{
if (state_ && state_->get_status() == FutureStatus::not_ready)
state_->set_exception(std::make_exception_ptr(
std::future_error(std::future_errc::broken_promise)));
}
// Move type
Promise(Promise const&) = delete;
Promise& operator=(Promise const&) = delete;
Promise(Promise&& that) :
state_(std::move(that.state_)), future_get_(that.future_get_)
{
that.future_get_ = false;
}
Promise& operator=(Promise&& that)
{
this->state_ = std::move(that.state_);
this->future_get_ = that.future_get_;
that.future_get_ = false;
return *this;
}
Future<void> get_future()
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
if (future_get_)
throw std::future_error(std::future_errc::future_already_retrieved);
future_get_ = true;
return Future<void>(state_);
}
void set_value()
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
state_->set_value();
}
void set_exception(std::exception_ptr exception)
{
if (state_ == nullptr)
throw std::future_error(std::future_errc::no_state);
state_->set_exception(std::move(exception));
}
private:
std::shared_ptr<FutureState<void>> state_;
bool future_get_ = false;
};
}
}
#endif
|