/usr/include/ql/termstructures/yield/zerocurve.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 StatPro Italia srl
Copyright (C) 2009, 2015 Ferdinando Ametrano
Copyright (C) 2015 Paolo Mazzocchi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file zerocurve.hpp
\brief interpolated zero-rates structure
*/
#ifndef quantlib_zero_curve_hpp
#define quantlib_zero_curve_hpp
#include <ql/termstructures/yield/zeroyieldstructure.hpp>
#include <ql/termstructures/interpolatedcurve.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/interestrate.hpp>
#include <ql/math/comparison.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <utility>
namespace QuantLib {
//! YieldTermStructure based on interpolation of zero rates
/*! \ingroup yieldtermstructures */
template <class Interpolator>
class InterpolatedZeroCurve : public ZeroYieldStructure,
protected InterpolatedCurve<Interpolator> {
public:
// constructor
InterpolatedZeroCurve(
const std::vector<Date>& dates,
const std::vector<Rate>& yields,
const DayCounter& dayCounter,
const Calendar& calendar = Calendar(),
const std::vector<Handle<Quote> >& jumps =
std::vector<Handle<Quote> >(),
const std::vector<Date>& jumpDates = std::vector<Date>(),
const Interpolator& interpolator = Interpolator(),
Compounding compounding = Continuous,
Frequency frequency = Annual);
InterpolatedZeroCurve(
const std::vector<Date>& dates,
const std::vector<Rate>& yields,
const DayCounter& dayCounter,
const Calendar& calendar,
const Interpolator& interpolator,
Compounding compounding = Continuous,
Frequency frequency = Annual);
InterpolatedZeroCurve(
const std::vector<Date>& dates,
const std::vector<Rate>& yields,
const DayCounter& dayCounter,
const Interpolator& interpolator,
Compounding compounding = Continuous,
Frequency frequency = Annual);
//! \name TermStructure interface
//@{
Date maxDate() const;
//@}
//! \name other inspectors
//@{
const std::vector<Time>& times() const;
const std::vector<Date>& dates() const;
const std::vector<Real>& data() const;
const std::vector<Rate>& zeroRates() const;
std::vector<std::pair<Date, Real> > nodes() const;
//@}
protected:
InterpolatedZeroCurve(
const DayCounter&,
const std::vector<Handle<Quote> >& jumps = std::vector<Handle<Quote> >(),
const std::vector<Date>& jumpDates = std::vector<Date>(),
const Interpolator& interpolator = Interpolator());
InterpolatedZeroCurve(
const Date& referenceDate,
const DayCounter&,
const std::vector<Handle<Quote> >& jumps = std::vector<Handle<Quote> >(),
const std::vector<Date>& jumpDates = std::vector<Date>(),
const Interpolator& interpolator = Interpolator());
InterpolatedZeroCurve(
Natural settlementDays,
const Calendar&,
const DayCounter&,
const std::vector<Handle<Quote> >& jumps = std::vector<Handle<Quote> >(),
const std::vector<Date>& jumpDates = std::vector<Date>(),
const Interpolator& interpolator = Interpolator());
//! \name ZeroYieldStructure implementation
//@{
Rate zeroYieldImpl(Time t) const;
//@}
mutable std::vector<Date> dates_;
private:
void initialize(const Compounding& compounding, const Frequency& frequency);
};
//! Term structure based on linear interpolation of zero yields
/*! \ingroup yieldtermstructures */
typedef InterpolatedZeroCurve<Linear> ZeroCurve;
// inline definitions
template <class T>
inline Date InterpolatedZeroCurve<T>::maxDate() const {
if (this->maxDate_ != Date())
return this->maxDate_;
return dates_.back();
}
template <class T>
inline const std::vector<Time>& InterpolatedZeroCurve<T>::times() const {
return this->times_;
}
template <class T>
inline const std::vector<Date>& InterpolatedZeroCurve<T>::dates() const {
return dates_;
}
template <class T>
inline const std::vector<Real>&
InterpolatedZeroCurve<T>::data() const {
return this->data_;
}
template <class T>
inline const std::vector<Rate>&
InterpolatedZeroCurve<T>::zeroRates() const {
return this->data_;
}
template <class T>
inline std::vector<std::pair<Date, Real> >
InterpolatedZeroCurve<T>::nodes() const {
std::vector<std::pair<Date, Real> > results(dates_.size());
for (Size i=0; i<dates_.size(); ++i)
results[i] = std::make_pair(dates_[i], this->data_[i]);
return results;
}
#ifndef __DOXYGEN__
// template definitions
template <class T>
Rate InterpolatedZeroCurve<T>::zeroYieldImpl(Time t) const {
if (t <= this->times_.back())
return this->interpolation_(t, true);
// flat fwd extrapolation
Time tMax = this->times_.back();
Rate zMax = this->data_.back();
Rate instFwdMax = zMax + tMax * this->interpolation_.derivative(tMax);
return (zMax * tMax + instFwdMax * (t-tMax)) / t;
}
template <class T>
InterpolatedZeroCurve<T>::InterpolatedZeroCurve(
const DayCounter& dayCounter,
const std::vector<Handle<Quote> >& jumps,
const std::vector<Date>& jumpDates,
const T& interpolator)
: ZeroYieldStructure(dayCounter, jumps, jumpDates),
InterpolatedCurve<T>(interpolator) {}
template <class T>
InterpolatedZeroCurve<T>::InterpolatedZeroCurve(
const Date& referenceDate,
const DayCounter& dayCounter,
const std::vector<Handle<Quote> >& jumps,
const std::vector<Date>& jumpDates,
const T& interpolator)
: ZeroYieldStructure(referenceDate, Calendar(), dayCounter, jumps, jumpDates),
InterpolatedCurve<T>(interpolator) {}
template <class T>
InterpolatedZeroCurve<T>::InterpolatedZeroCurve(
Natural settlementDays,
const Calendar& calendar,
const DayCounter& dayCounter,
const std::vector<Handle<Quote> >& jumps,
const std::vector<Date>& jumpDates,
const T& interpolator)
: ZeroYieldStructure(settlementDays, calendar, dayCounter, jumps, jumpDates),
InterpolatedCurve<T>(interpolator) {}
template <class T>
InterpolatedZeroCurve<T>::InterpolatedZeroCurve(
const std::vector<Date>& dates,
const std::vector<Rate>& yields,
const DayCounter& dayCounter,
const Calendar& calendar,
const std::vector<Handle<Quote> >& jumps,
const std::vector<Date>& jumpDates,
const T& interpolator,
Compounding compounding,
Frequency frequency)
: ZeroYieldStructure(dates.at(0), calendar, dayCounter, jumps, jumpDates),
InterpolatedCurve<T>(std::vector<Time>(), yields, interpolator),
dates_(dates)
{
initialize(compounding,frequency);
}
template <class T>
InterpolatedZeroCurve<T>::InterpolatedZeroCurve(
const std::vector<Date>& dates,
const std::vector<Rate>& yields,
const DayCounter& dayCounter,
const Calendar& calendar,
const T& interpolator,
Compounding compounding,
Frequency frequency)
: ZeroYieldStructure(dates.at(0), calendar, dayCounter),
InterpolatedCurve<T>(std::vector<Time>(), yields, interpolator),
dates_(dates)
{
initialize(compounding,frequency);
}
template <class T>
InterpolatedZeroCurve<T>::InterpolatedZeroCurve(
const std::vector<Date>& dates,
const std::vector<Rate>& yields,
const DayCounter& dayCounter,
const T& interpolator,
Compounding compounding,
Frequency frequency)
: ZeroYieldStructure(dates.at(0), Calendar(), dayCounter),
InterpolatedCurve<T>(std::vector<Time>(), yields, interpolator),
dates_(dates)
{
initialize(compounding,frequency);
}
#endif
template <class T>
void InterpolatedZeroCurve<T>::initialize(const Compounding& compounding,
const Frequency& frequency)
{
QL_REQUIRE(dates_.size() >= T::requiredPoints,
"not enough input dates given");
QL_REQUIRE(this->data_.size() == dates_.size(),
"dates/data count mismatch");
this->times_.resize(dates_.size());
this->times_[0] = 0.0;
if (compounding != Continuous) {
// We also have to convert the first rate.
// The first time is 0.0, so we can't use it.
// We fall back to about one day.
Time dt = 1.0/365;
InterestRate r(this->data_[0], dayCounter(), compounding, frequency);
this->data_[0] = r.equivalentRate(Continuous, NoFrequency, dt);
#if !defined(QL_NEGATIVE_RATES)
QL_REQUIRE(this->data_[0] > 0.0, "non-positive yield");
#endif
}
for (Size i=1; i<dates_.size(); ++i) {
QL_REQUIRE(dates_[i] > dates_[i-1],
"invalid date (" << dates_[i] << ", vs "
<< dates_[i-1] << ")");
this->times_[i] = dayCounter().yearFraction(dates_[0], dates_[i]);
QL_REQUIRE(!close(this->times_[i],this->times_[i-1]),
"two dates correspond to the same time "
"under this curve's day count convention");
// adjusting zero rates to match continuous compounding
if (compounding != Continuous)
{
InterestRate r(this->data_[i], dayCounter(), compounding, frequency);
this->data_[i] = r.equivalentRate(Continuous, NoFrequency, this->times_[i]);
}
#if !defined(QL_NEGATIVE_RATES)
QL_REQUIRE(this->data_[i] > 0.0, "non-positive yield");
// positive yields are not enough to ensure non-negative fwd rates
// so here's a stronger requirement
QL_REQUIRE(this->data_[i] * this->times_[i] -
this->data_[i - 1] * this->times_[i - 1] >= 0.0,
"negative forward rate implied by the zero yield " <<
io::rate(this->data_[i]) << " at " << dates_[i] <<
" (t=" << this->times_[i] << ") after the zero yield " <<
io::rate(this->data_[i - 1]) << " at " << dates_[i - 1] <<
" (t=" << this->times_[i - 1] << ")");
#endif
}
this->interpolation_ =
this->interpolator_.interpolate(this->times_.begin(),
this->times_.end(),
this->data_.begin());
this->interpolation_.update();
}
}
#endif
|