/usr/include/ql/termstructures/volatility/abcd.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006, 2007 Ferdinando Ametrano
Copyright (C) 2006 Cristina Duminuco
Copyright (C) 2007 Giorgio Facchinetti
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_abcd_hpp
#define quantlib_abcd_hpp
#include <ql/types.hpp>
#include <ql/errors.hpp>
#include <ql/math/abcdmathfunction.hpp>
namespace QuantLib {
//! %Abcd functional form for instantaneous volatility
/*! \f[ f(T-t) = [ a + b(T-t) ] e^{-c(T-t)} + d \f]
following Rebonato's notation. */
class AbcdFunction : public AbcdMathFunction {
public:
AbcdFunction(Real a = -0.06,
Real b = 0.17,
Real c = 0.54,
Real d = 0.17);
//! maximum value of the volatility function
Real maximumVolatility() const { return maximumValue(); }
//! volatility function value at time 0: \f[ f(0) \f]
Real shortTermVolatility() const { return (*this)(0.0); }
//! volatility function value at time +inf: \f[ f(\inf) \f]
Real longTermVolatility() const { return longTermValue(); }
/*! instantaneous covariance function at time t between T-fixing and
S-fixing rates \f[ f(T-t)f(S-t) \f] */
Real covariance(Time t, Time T, Time S) const;
/*! integral of the instantaneous covariance function between
time t1 and t2 for T-fixing and S-fixing rates
\f[ \int_{t1}^{t2} f(T-t)f(S-t)dt \f] */
Real covariance(Time t1, Time t2, Time T, Time S) const;
/*! average volatility in [tMin,tMax] of T-fixing rate:
\f[ \sqrt{ \frac{\int_{tMin}^{tMax} f^2(T-u)du}{tMax-tMin} } \f] */
Real volatility(Time tMin, Time tMax, Time T) const;
/*! variance between tMin and tMax of T-fixing rate:
\f[ \frac{\int_{tMin}^{tMax} f^2(T-u)du}{tMax-tMin} \f] */
Real variance(Time tMin, Time tMax, Time T) const;
// INSTANTANEOUS
/*! instantaneous volatility at time t of the T-fixing rate:
\f[ f(T-t) \f] */
Real instantaneousVolatility(Time t, Time T) const;
/*! instantaneous variance at time t of T-fixing rate:
\f[ f(T-t)f(T-t) \f] */
Real instantaneousVariance(Time t, Time T) const;
/*! instantaneous covariance at time t between T and S fixing rates:
\f[ f(T-u)f(S-u) \f] */
Real instantaneousCovariance(Time u, Time T, Time S) const;
// PRIMITIVE
/*! indefinite integral of the instantaneous covariance function at
time t between T-fixing and S-fixing rates
\f[ \int f(T-t)f(S-t)dt \f] */
Real primitive(Time t, Time T, Time S) const;
};
// Helper class used by unit tests
class AbcdSquared : public std::unary_function<Real,Real> {
public:
AbcdSquared(Real a, Real b, Real c, Real d, Time T, Time S);
Real operator()(Time t) const;
private:
boost::shared_ptr<AbcdFunction> abcd_;
Time T_, S_;
};
inline Real abcdBlackVolatility(Time u, Real a, Real b, Real c, Real d) {
AbcdFunction model(a,b,c,d);
return model.volatility(0.,u,u);
}
}
#endif
|