/usr/include/ql/termstructures/localbootstrap.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Simon Ibbotson
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file localbootstrap.hpp
\brief localised-term-structure bootstrapper for most curve types.
*/
#ifndef quantlib_local_bootstrap_hpp
#define quantlib_local_bootstrap_hpp
#include <ql/termstructures/bootstraphelper.hpp>
#include <ql/math/optimization/costfunction.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/optimization/armijo.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <boost/shared_ptr.hpp>
namespace QuantLib {
// penalty function class for solving using a multi-dimensional solver
template <class Curve>
class PenaltyFunction : public CostFunction {
typedef typename Curve::traits_type Traits;
typedef typename Traits::helper helper;
typedef
typename std::vector< boost::shared_ptr<helper> >::const_iterator
helper_iterator;
public:
PenaltyFunction(Curve* curve,
Size initialIndex,
helper_iterator rateHelpersStart,
helper_iterator rateHelpersEnd)
: curve_(curve), initialIndex_(initialIndex),
rateHelpersStart_(rateHelpersStart), rateHelpersEnd_(rateHelpersEnd) {
localisation_ = std::distance(rateHelpersStart, rateHelpersEnd);
}
Real value(const Array& x) const;
Disposable<Array> values(const Array& x) const;
private:
Curve* curve_;
Size initialIndex_;
Size localisation_;
helper_iterator rateHelpersStart_;
helper_iterator rateHelpersEnd_;
};
//! Localised-term-structure bootstrapper for most curve types.
/*! This algorithm enables a localised fitting for non-local
interpolation methods.
As in the similar class (IterativeBootstrap) the input term
structure is solved on a number of market instruments which
are passed as a vector of handles to BootstrapHelper
instances. Their maturities mark the boundaries of the
interpolated segments.
Unlike the IterativeBootstrap class, the solution for each
interpolated segment is derived using a local
approximation. This restricts the risk profile s.t. the risk
is localised. Therefore, we obtain a local IR risk profile
whilst using a smoother interpolation method. Particularly
good for the convex-monotone spline method.
*/
template <class Curve>
class LocalBootstrap {
typedef typename Curve::traits_type Traits;
typedef typename Curve::interpolator_type Interpolator;
public:
LocalBootstrap(Size localisation = 2,
bool forcePositive = true);
void setup(Curve* ts);
void calculate() const;
private:
mutable bool validCurve_;
Curve* ts_;
Size localisation_;
bool forcePositive_;
};
// template definitions
template <class Curve>
LocalBootstrap<Curve>::LocalBootstrap(Size localisation,
bool forcePositive)
: validCurve_(false), ts_(0), localisation_(localisation),
forcePositive_(forcePositive)
{}
template <class Curve>
void LocalBootstrap<Curve>::setup(Curve* ts) {
ts_ = ts;
Size n = ts_->instruments_.size();
QL_REQUIRE(n >= Interpolator::requiredPoints,
"not enough instruments: " << n << " provided, " <<
Interpolator::requiredPoints << " required");
QL_REQUIRE(n > localisation_,
"not enough instruments: " << n << " provided, " <<
localisation_ << " required.");
for (Size i=0; i<n; ++i){
ts_->registerWith(ts_->instruments_[i]);
}
}
template <class Curve>
void LocalBootstrap<Curve>::calculate() const {
validCurve_ = false;
Size nInsts = ts_->instruments_.size();
// ensure rate helpers are sorted
std::sort(ts_->instruments_.begin(), ts_->instruments_.end(),
detail::BootstrapHelperSorter());
// check that there is no instruments with the same maturity
for (Size i=1; i<nInsts; ++i) {
Date m1 = ts_->instruments_[i-1]->pillarDate(),
m2 = ts_->instruments_[i]->pillarDate();
QL_REQUIRE(m1 != m2,
"two instruments have the same pillar date ("<<m1<<")");
}
// check that there is no instruments with invalid quote
for (Size i=0; i<nInsts; ++i)
QL_REQUIRE(ts_->instruments_[i]->quote()->isValid(),
io::ordinal(i+1) << " instrument (maturity: " <<
ts_->instruments_[i]->maturityDate() << ", pillar: " <<
ts_->instruments_[i]->pillarDate() <<
") has an invalid quote");
// setup instruments
for (Size i=0; i<nInsts; ++i) {
// don't try this at home!
// This call creates instruments, and removes "const".
// There is a significant interaction with observability.
ts_->instruments_[i]->setTermStructure(const_cast<Curve*>(ts_));
}
// set initial guess only if the current curve cannot be used as guess
if (validCurve_)
QL_ENSURE(ts_->data_.size() == nInsts+1,
"dimension mismatch: expected " << nInsts+1 <<
", actual " << ts_->data_.size());
else {
ts_->data_ = std::vector<Rate>(nInsts+1);
ts_->data_[0] = Traits::initialValue(ts_);
}
// calculate dates and times
ts_->dates_ = std::vector<Date>(nInsts+1);
ts_->times_ = std::vector<Time>(nInsts+1);
ts_->dates_[0] = Traits::initialDate(ts_);
ts_->times_[0] = ts_->timeFromReference(ts_->dates_[0]);
for (Size i=0; i<nInsts; ++i) {
ts_->dates_[i+1] = ts_->instruments_[i]->pillarDate();
ts_->times_[i+1] = ts_->timeFromReference(ts_->dates_[i+1]);
if (!validCurve_)
ts_->data_[i+1] = ts_->data_[i];
}
LevenbergMarquardt solver(ts_->accuracy_,
ts_->accuracy_,
ts_->accuracy_);
EndCriteria endCriteria(100, 10, 0.00, ts_->accuracy_, 0.00);
PositiveConstraint posConstraint;
NoConstraint noConstraint;
Constraint& solverConstraint = forcePositive_ ?
static_cast<Constraint&>(posConstraint) :
static_cast<Constraint&>(noConstraint);
// now start the bootstrapping.
Size iInst = localisation_-1;
Size dataAdjust = Curve::interpolator_type::dataSizeAdjustment;
do {
Size initialDataPt = iInst+1-localisation_+dataAdjust;
Array startArray(localisation_+1-dataAdjust);
for (Size j = 0; j < startArray.size()-1; ++j)
startArray[j] = ts_->data_[initialDataPt+j];
// here we are extending the interpolation a point at a
// time... but the local interpolator can make an
// approximation for the final localisation period.
// e.g. if the localisation is 2, then the first section
// of the curve will be solved using the first 2
// instruments... with the local interpolator making
// suitable boundary conditions.
ts_->interpolation_ =
ts_->interpolator_.localInterpolate(
ts_->times_.begin(),
ts_->times_.begin()+(iInst + 2),
ts_->data_.begin(),
localisation_,
ts_->interpolation_,
nInsts+1);
if (iInst >= localisation_) {
startArray[localisation_-dataAdjust] =
Traits::guess(iInst, ts_, false, 0); // ?
} else {
startArray[localisation_-dataAdjust] = ts_->data_[0];
}
PenaltyFunction<Curve> currentCost(
ts_,
initialDataPt,
ts_->instruments_.begin() + ((iInst+1) - localisation_),
ts_->instruments_.begin() + (iInst+1));
Problem toSolve(currentCost, solverConstraint, startArray);
EndCriteria::Type endType = solver.minimize(toSolve, endCriteria);
// check the end criteria
QL_REQUIRE(endType == EndCriteria::StationaryFunctionAccuracy ||
endType == EndCriteria::StationaryFunctionValue,
"Unable to strip yieldcurve to required accuracy " );
++iInst;
} while ( iInst < nInsts );
validCurve_ = true;
}
template <class Curve>
Real PenaltyFunction<Curve>::value(const Array& x) const {
Size i = initialIndex_;
Array::const_iterator guessIt = x.begin();
while (guessIt != x.end()) {
Traits::updateGuess(curve_->data_, *guessIt, i);
++guessIt;
++i;
}
curve_->interpolation_.update();
Real penalty = 0.0;
helper_iterator instIt = rateHelpersStart_;
while (instIt != rateHelpersEnd_) {
Real quoteError = (*instIt)->quoteError();
penalty += std::fabs(quoteError);
++instIt;
}
return penalty;
}
template <class Curve>
Disposable<Array> PenaltyFunction<Curve>::values(const Array& x) const {
Array::const_iterator guessIt = x.begin();
Size i = initialIndex_;
while (guessIt != x.end()) {
Traits::updateGuess(curve_->data_, *guessIt, i);
++guessIt;
++i;
}
curve_->interpolation_.update();
Array penalties(localisation_);
helper_iterator instIt = rateHelpersStart_;
Array::iterator penIt = penalties.begin();
while (instIt != rateHelpersEnd_) {
Real quoteError = (*instIt)->quoteError();
*penIt = std::fabs(quoteError);
++instIt;
++penIt;
}
return penalties;
}
}
#endif
|