This file is indexed.

/usr/include/ql/pricingengines/vanilla/mcamericanengine.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Klaus Spanderen
 Copyright (C) 2007 StatPro Italia srl
 Copyright (C) 2016 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file mcamericanengine.hpp
    \brief American Monte Carlo engine
*/

#ifndef quantlib_mc_american_engine_hpp
#define quantlib_mc_american_engine_hpp

#include <ql/qldefines.hpp>
#include <ql/payoff.hpp>
#include <ql/exercise.hpp>
#include <ql/methods/montecarlo/lsmbasissystem.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/pricingengines/mclongstaffschwartzengine.hpp>
#include <ql/pricingengines/vanilla/mceuropeanengine.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>

namespace QuantLib {

    //! American Monte Carlo engine
    /*! References:

        \ingroup vanillaengines

        \test the correctness of the returned value is tested by
              reproducing results available in web/literature
    */
    template <class RNG = PseudoRandom, class S = Statistics,
              class RNG_Calibration = RNG>
    class MCAmericanEngine
        : public MCLongstaffSchwartzEngine<VanillaOption::engine,
                                           SingleVariate,RNG,S,RNG_Calibration> {
      public:
        MCAmericanEngine(
             const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
             Size timeSteps,
             Size timeStepsPerYear,
             bool antitheticVariate,
             bool controlVariate,
             Size requiredSamples,
             Real requiredTolerance,
             Size maxSamples,
             BigNatural seed,
             Size polynomOrder,
             LsmBasisSystem::PolynomType polynomType,
             Size nCalibrationSamples = Null<Size>(),
             boost::optional<bool> antitheticVariateCalibration = boost::none,
             BigNatural seedCalibration = Null<Size>());

        void calculate() const;
        
      protected:
        boost::shared_ptr<LongstaffSchwartzPathPricer<Path> >
            lsmPathPricer() const;

        Real controlVariateValue() const;
        boost::shared_ptr<PricingEngine> controlPricingEngine() const;
        boost::shared_ptr<PathPricer<Path> > controlPathPricer() const;

      private:
        const Size polynomOrder_;
        const LsmBasisSystem::PolynomType polynomType_;
    };

    class AmericanPathPricer : public EarlyExercisePathPricer<Path>  {
      public:
        AmericanPathPricer(const boost::shared_ptr<Payoff>& payoff,
                           Size polynomOrder,
                           LsmBasisSystem::PolynomType polynomType);

        Real state(const Path& path, Size t) const;
        Real operator()(const Path& path, Size t) const;

        std::vector<boost::function1<Real, Real> > basisSystem() const;

      protected:
        Real payoff(Real state) const;

        Real scalingValue_;
        const boost::shared_ptr<Payoff> payoff_;
        std::vector<boost::function1<Real, Real> > v_;
    };


    //! Monte Carlo American engine factory
    template <class RNG = PseudoRandom, class S = Statistics,
              class RNG_Calibration = RNG>
    class MakeMCAmericanEngine {
      public:
        MakeMCAmericanEngine(
                    const boost::shared_ptr<GeneralizedBlackScholesProcess>&);
        // named parameters
        MakeMCAmericanEngine& withSteps(Size steps);
        MakeMCAmericanEngine& withStepsPerYear(Size steps);
        MakeMCAmericanEngine& withSamples(Size samples);
        MakeMCAmericanEngine& withAbsoluteTolerance(Real tolerance);
        MakeMCAmericanEngine& withMaxSamples(Size samples);
        MakeMCAmericanEngine& withSeed(BigNatural seed);
        MakeMCAmericanEngine& withAntitheticVariate(bool b = true);
        MakeMCAmericanEngine& withControlVariate(bool b = true);
        MakeMCAmericanEngine& withPolynomOrder(Size polynomOrer);
        MakeMCAmericanEngine& withBasisSystem(LsmBasisSystem::PolynomType);
        MakeMCAmericanEngine& withCalibrationSamples(Size calibrationSamples);
        MakeMCAmericanEngine& withAntitheticVariateCalibration(bool b = true);
        MakeMCAmericanEngine& withSeedCalibration(BigNatural seed);

        // conversion to pricing engine
        operator boost::shared_ptr<PricingEngine>() const;
      private:
        boost::shared_ptr<GeneralizedBlackScholesProcess> process_;
        bool antithetic_, controlVariate_;
        Size steps_, stepsPerYear_;
        Size samples_, maxSamples_, calibrationSamples_;
        Real tolerance_;
        BigNatural seed_;
        Size polynomOrder_;
        LsmBasisSystem::PolynomType polynomType_;
        boost::optional<bool> antitheticCalibration_;
        BigNatural seedCalibration_;
    };

    template <class RNG, class S, class RNG_Calibration>
    inline MCAmericanEngine<RNG, S, RNG_Calibration>::MCAmericanEngine(
        const boost::shared_ptr<GeneralizedBlackScholesProcess> &process,
        Size timeSteps, Size timeStepsPerYear, bool antitheticVariate,
        bool controlVariate, Size requiredSamples, Real requiredTolerance,
        Size maxSamples, BigNatural seed, Size polynomOrder,
        LsmBasisSystem::PolynomType polynomType, Size nCalibrationSamples,
        boost::optional<bool> antitheticVariateCalibration,
        BigNatural seedCalibration)
        : MCLongstaffSchwartzEngine<VanillaOption::engine, SingleVariate, RNG,
                                    S, RNG_Calibration>(
              process, timeSteps, timeStepsPerYear, false, antitheticVariate,
              controlVariate, requiredSamples, requiredTolerance, maxSamples,
              seed, nCalibrationSamples, false, antitheticVariateCalibration,
              seedCalibration),
          polynomOrder_(polynomOrder), polynomType_(polynomType) {}

    template <class RNG, class S, class RNG_Calibration>
    inline void MCAmericanEngine<RNG, S, RNG_Calibration>::calculate() const {
        MCLongstaffSchwartzEngine<VanillaOption::engine, SingleVariate, RNG, S,
                                  RNG_Calibration>::calculate();
        if (this->controlVariate_) {
            // control variate might lead to small negative
            // option values for deep OTM options
            this->results_.value = std::max(0.0, this->results_.value);
        }
    }

    template <class RNG, class S, class RNG_Calibration>
    inline boost::shared_ptr<LongstaffSchwartzPathPricer<Path> >
    MCAmericanEngine<RNG, S, RNG_Calibration>::lsmPathPricer() const {
        boost::shared_ptr<GeneralizedBlackScholesProcess> process =
            boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
                                                              this->process_);
        QL_REQUIRE(process, "generalized Black-Scholes process required");

        boost::shared_ptr<EarlyExercise> exercise =
            boost::dynamic_pointer_cast<EarlyExercise>(
                this->arguments_.exercise);
        QL_REQUIRE(exercise, "wrong exercise given");
        QL_REQUIRE(!exercise->payoffAtExpiry(),
                   "payoff at expiry not handled");

        boost::shared_ptr<AmericanPathPricer> earlyExercisePathPricer(
            new AmericanPathPricer(this->arguments_.payoff,
                                   polynomOrder_, polynomType_));

        return boost::shared_ptr<LongstaffSchwartzPathPricer<Path> > (
             new LongstaffSchwartzPathPricer<Path>(
                                      this->timeGrid(),
                                      earlyExercisePathPricer,
                                      *(process->riskFreeRate())));
    }

    template <class RNG, class S, class RNG_Calibration>
    inline boost::shared_ptr<PathPricer<Path> >
    MCAmericanEngine<RNG, S, RNG_Calibration>::controlPathPricer() const {
        boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(
                this->arguments_.payoff);
        QL_REQUIRE(payoff, "StrikedTypePayoff needed for control variate");

        boost::shared_ptr<GeneralizedBlackScholesProcess> process =
            boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
                                                              this->process_);
        QL_REQUIRE(process, "generalized Black-Scholes process required");

        return boost::shared_ptr<PathPricer<Path> >(
            new EuropeanPathPricer(
                payoff->optionType(),
                payoff->strike(),
                process->riskFreeRate()->discount(this->timeGrid().back()))
            );
    }

    template <class RNG, class S, class RNG_Calibration>
    inline boost::shared_ptr<PricingEngine>
    MCAmericanEngine<RNG, S, RNG_Calibration>::controlPricingEngine() const {
        boost::shared_ptr<GeneralizedBlackScholesProcess> process =
            boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
                                                              this->process_);
        QL_REQUIRE(process, "generalized Black-Scholes process required");

        return boost::shared_ptr<PricingEngine>(
                                         new AnalyticEuropeanEngine(process));
    }

    template <class RNG, class S, class RNG_Calibration>
    inline Real
    MCAmericanEngine<RNG, S, RNG_Calibration>::controlVariateValue() const {
        boost::shared_ptr<PricingEngine> controlPE =
            this->controlPricingEngine();

        QL_REQUIRE(controlPE,
                   "engine does not provide "
                   "control variation pricing engine");

        VanillaOption::arguments* controlArguments =
            dynamic_cast<VanillaOption::arguments*>(controlPE->getArguments());
        *controlArguments = this->arguments_;
        controlArguments->exercise = boost::shared_ptr<Exercise>(
             new EuropeanExercise(this->arguments_.exercise->lastDate()));

        controlPE->calculate();

        const VanillaOption::results* controlResults =
            dynamic_cast<const VanillaOption::results*>(
                                                     controlPE->getResults());

        return controlResults->value;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration>::MakeMCAmericanEngine(
        const boost::shared_ptr<GeneralizedBlackScholesProcess> &process)
        : process_(process), antithetic_(false), controlVariate_(false),
          steps_(Null<Size>()), stepsPerYear_(Null<Size>()),
          samples_(Null<Size>()), maxSamples_(Null<Size>()),
          calibrationSamples_(2048), tolerance_(Null<Real>()), seed_(0),
          polynomOrder_(2), polynomType_(LsmBasisSystem::Monomial),
          antitheticCalibration_(boost::none), seedCalibration_(Null<Size>()) {}

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withPolynomOrder(
        Size polynomOrder) {
        polynomOrder_ = polynomOrder;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withBasisSystem(
        LsmBasisSystem::PolynomType polynomType) {
        polynomType_ = polynomType;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withSteps(Size steps) {
        steps_ = steps;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withStepsPerYear(
        Size steps) {
        stepsPerYear_ = steps;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withSamples(Size samples) {
        QL_REQUIRE(tolerance_ == Null<Real>(),
                   "tolerance already set");
        samples_ = samples;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withAbsoluteTolerance(
        Real tolerance) {
        QL_REQUIRE(samples_ == Null<Size>(),
                   "number of samples already set");
        QL_REQUIRE(RNG::allowsErrorEstimate,
                   "chosen random generator policy "
                   "does not allow an error estimate");
        tolerance_ = tolerance;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withMaxSamples(
        Size samples) {
        maxSamples_ = samples;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withCalibrationSamples(
        Size samples) {
        calibrationSamples_ = samples;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withSeed(BigNatural seed) {
        seed_ = seed;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withAntitheticVariate(
        bool b) {
        antithetic_ = b;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withControlVariate(bool b) {
        controlVariate_ = b;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &MakeMCAmericanEngine<
        RNG, S, RNG_Calibration>::withAntitheticVariateCalibration(bool b) {
        antitheticCalibration_ = b;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration> &
    MakeMCAmericanEngine<RNG, S, RNG_Calibration>::withSeedCalibration(
        BigNatural seed) {
        seedCalibration_ = seed;
        return *this;
    }

    template <class RNG, class S, class RNG_Calibration>
    inline MakeMCAmericanEngine<RNG, S, RNG_Calibration>::
    operator boost::shared_ptr<PricingEngine>() const {
        QL_REQUIRE(steps_ != Null<Size>() || stepsPerYear_ != Null<Size>(),
                   "number of steps not given");
        QL_REQUIRE(steps_ == Null<Size>() || stepsPerYear_ == Null<Size>(),
                   "number of steps overspecified");
        return boost::shared_ptr<PricingEngine>(new
           MCAmericanEngine<RNG, S, RNG_Calibration>(process_,
                                     steps_,
                                     stepsPerYear_,
                                     antithetic_,
                                     controlVariate_,
                                     samples_, tolerance_,
                                     maxSamples_,
                                     seed_,
                                     polynomOrder_,
                                     polynomType_,
                                     calibrationSamples_,
                                     antitheticCalibration_,
                                     seedCalibration_));
    }

}

#endif