This file is indexed.

/usr/include/ql/pricingengines/vanilla/analytichestonhullwhiteengine.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2007 Klaus Spanderen
 Copyright (C) 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file analytichestonhullwhiteengine.hpp
    \brief analytic heston engine incl. stochastic interest rates
*/

#ifndef quantlib_analytic_heston_hull_white_engine_hpp
#define quantlib_analytic_heston_hull_white_engine_hpp

#include <ql/models/equity/hestonmodel.hpp>
#include <ql/models/shortrate/onefactormodels/hullwhite.hpp>
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>

namespace QuantLib {

    //! Analytic Heston engine incl. stochastic interest rates
    /*! This class is pricing a european option under the following process

        \f[
        \begin{array}{rcl}
        dS(t, S)  &=& (r-d) S dt +\sqrt{v} S dW_1 \\
        dv(t, S)  &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\
        dr(t)     &=& (\theta(t) - a r) dt + \eta dW_3 \\
        dW_1 dW_2 &=& \rho dt \\
        dW_1 dW_3 &=& 0 \\
        dW_2 dW_3 &=& 0 \\
        \end{array}
        \f]

        References:

        Karel in't Hout, Joris Bierkens, Antoine von der Ploeg,
        Joe in't Panhuis, A Semi closed-from analytic pricing formula for
        call options in a hybrid Heston-Hull-White Model.

        A. Sepp, Pricing European-Style Options under Jump Diffusion
        Processes with Stochastic Volatility: Applications of Fourier
        Transform (<http://math.ut.ee/~spartak/papers/stochjumpvols.pdf>)

        \ingroup vanillaengines

        \test the correctness of the returned value is tested by
              reproducing results available in web/literature, testing
              against QuantLib's analytic Heston and
              Black-Scholes-Merton Hull-White engine
    */
    class AnalyticHestonHullWhiteEngine : public AnalyticHestonEngine {
      public:
        // see AnalticHestonEninge for usage of different constructors
        AnalyticHestonHullWhiteEngine(
                        const boost::shared_ptr<HestonModel>& hestonModel,
                        const boost::shared_ptr<HullWhite>& hullWhiteModel,
                        Size integrationOrder = 144);

        AnalyticHestonHullWhiteEngine(
                        const boost::shared_ptr<HestonModel>& model,
                        const boost::shared_ptr<HullWhite>& hullWhiteModel,
                        Real relTolerance, Size maxEvaluations);


        void update();
        void calculate() const;

      protected:
        std::complex<Real> addOnTerm(Real phi, Time t, Size j) const;

        const boost::shared_ptr<HullWhite> hullWhiteModel_;

      private:
        mutable Real m_;
        mutable Real a_, sigma_;
    };

    inline
    std::complex<Real> AnalyticHestonHullWhiteEngine::addOnTerm(Real u,
                                                                Time,
                                                                Size j) const {
        return std::complex<Real>(-m_*u*u, u*(m_-2*m_*(j-1)));
    }

}

#endif