/usr/include/ql/pricingengines/mcsimulation.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mcsimulation.hpp
\brief framework for Monte Carlo engines
*/
#ifndef quantlib_montecarlo_engine_hpp
#define quantlib_montecarlo_engine_hpp
#include <ql/grid.hpp>
#include <ql/methods/montecarlo/montecarlomodel.hpp>
namespace QuantLib {
//! base class for Monte Carlo engines
/*! Eventually this class might offer greeks methods. Deriving a
class from McSimulation gives an easy way to write a Monte
Carlo engine.
See McVanillaEngine as an example.
*/
template <template <class> class MC, class RNG, class S = Statistics>
class McSimulation {
public:
typedef typename MonteCarloModel<MC,RNG,S>::path_generator_type
path_generator_type;
typedef typename MonteCarloModel<MC,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename MonteCarloModel<MC,RNG,S>::stats_type
stats_type;
typedef typename MonteCarloModel<MC,RNG,S>::result_type result_type;
virtual ~McSimulation() {}
//! add samples until the required absolute tolerance is reached
result_type value(Real tolerance,
Size maxSamples = QL_MAX_INTEGER,
Size minSamples = 1023) const;
//! simulate a fixed number of samples
result_type valueWithSamples(Size samples) const;
//! error estimated using the samples simulated so far
result_type errorEstimate() const;
//! access to the sample accumulator for richer statistics
const stats_type& sampleAccumulator(void) const;
//! basic calculate method provided to inherited pricing engines
void calculate(Real requiredTolerance,
Size requiredSamples,
Size maxSamples) const;
protected:
McSimulation(bool antitheticVariate,
bool controlVariate)
: antitheticVariate_(antitheticVariate),
controlVariate_(controlVariate) {}
virtual boost::shared_ptr<path_pricer_type> pathPricer() const = 0;
virtual boost::shared_ptr<path_generator_type> pathGenerator()
const = 0;
virtual TimeGrid timeGrid() const = 0;
virtual boost::shared_ptr<path_pricer_type> controlPathPricer() const {
return boost::shared_ptr<path_pricer_type>();
}
virtual boost::shared_ptr<path_generator_type>
controlPathGenerator() const {
return boost::shared_ptr<path_generator_type>();
}
virtual boost::shared_ptr<PricingEngine> controlPricingEngine() const {
return boost::shared_ptr<PricingEngine>();
}
virtual result_type controlVariateValue() const {
return Null<result_type>();
}
template <class Sequence>
static Real maxError(const Sequence& sequence) {
return *std::max_element(sequence.begin(), sequence.end());
}
static Real maxError(Real error) {
return error;
}
mutable boost::shared_ptr<MonteCarloModel<MC,RNG,S> > mcModel_;
bool antitheticVariate_, controlVariate_;
};
// inline definitions
template <template <class> class MC, class RNG, class S>
inline typename McSimulation<MC,RNG,S>::result_type
McSimulation<MC,RNG,S>::value(Real tolerance,
Size maxSamples,
Size minSamples) const {
Size sampleNumber =
mcModel_->sampleAccumulator().samples();
if (sampleNumber<minSamples) {
mcModel_->addSamples(minSamples-sampleNumber);
sampleNumber = mcModel_->sampleAccumulator().samples();
}
Size nextBatch;
Real order;
result_type error(mcModel_->sampleAccumulator().errorEstimate());
while (maxError(error) > tolerance) {
QL_REQUIRE(sampleNumber<maxSamples,
"max number of samples (" << maxSamples
<< ") reached, while error (" << error
<< ") is still above tolerance (" << tolerance << ")");
// conservative estimate of how many samples are needed
order = maxError(error*error)/tolerance/tolerance;
nextBatch =
Size(std::max<Real>(static_cast<Real>(sampleNumber)*order*0.8 - static_cast<Real>(sampleNumber),
static_cast<Real>(minSamples)));
// do not exceed maxSamples
nextBatch = std::min(nextBatch, maxSamples-sampleNumber);
sampleNumber += nextBatch;
mcModel_->addSamples(nextBatch);
error = result_type(mcModel_->sampleAccumulator().errorEstimate());
}
return result_type(mcModel_->sampleAccumulator().mean());
}
template <template <class> class MC, class RNG, class S>
inline typename McSimulation<MC,RNG,S>::result_type
McSimulation<MC,RNG,S>::valueWithSamples(Size samples) const {
Size sampleNumber = mcModel_->sampleAccumulator().samples();
QL_REQUIRE(samples>=sampleNumber,
"number of already simulated samples (" << sampleNumber
<< ") greater than requested samples (" << samples << ")");
mcModel_->addSamples(samples-sampleNumber);
return result_type(mcModel_->sampleAccumulator().mean());
}
template <template <class> class MC, class RNG, class S>
inline void McSimulation<MC,RNG,S>::calculate(Real requiredTolerance,
Size requiredSamples,
Size maxSamples) const {
QL_REQUIRE(requiredTolerance != Null<Real>() ||
requiredSamples != Null<Size>(),
"neither tolerance nor number of samples set");
//! Initialize the one-factor Monte Carlo
if (this->controlVariate_) {
result_type controlVariateValue = this->controlVariateValue();
QL_REQUIRE(controlVariateValue != Null<result_type>(),
"engine does not provide "
"control-variation price");
boost::shared_ptr<path_pricer_type> controlPP =
this->controlPathPricer();
QL_REQUIRE(controlPP,
"engine does not provide "
"control-variation path pricer");
boost::shared_ptr<path_generator_type> controlPG =
this->controlPathGenerator();
this->mcModel_ =
boost::shared_ptr<MonteCarloModel<MC,RNG,S> >(
new MonteCarloModel<MC,RNG,S>(
pathGenerator(), this->pathPricer(), stats_type(),
this->antitheticVariate_, controlPP,
controlVariateValue, controlPG));
} else {
this->mcModel_ =
boost::shared_ptr<MonteCarloModel<MC,RNG,S> >(
new MonteCarloModel<MC,RNG,S>(
pathGenerator(), this->pathPricer(), S(),
this->antitheticVariate_));
}
if (requiredTolerance != Null<Real>()) {
if (maxSamples != Null<Size>())
this->value(requiredTolerance, maxSamples);
else
this->value(requiredTolerance);
} else {
this->valueWithSamples(requiredSamples);
}
}
template <template <class> class MC, class RNG, class S>
inline typename McSimulation<MC,RNG,S>::result_type
McSimulation<MC,RNG,S>::errorEstimate() const {
return mcModel_->sampleAccumulator().errorEstimate();
}
template <template <class> class MC, class RNG, class S>
inline const typename McSimulation<MC,RNG,S>::stats_type&
McSimulation<MC,RNG,S>::sampleAccumulator() const {
return mcModel_->sampleAccumulator();
}
}
#endif
|