/usr/include/ql/pricingengines/mclongstaffschwartzengine.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Klaus Spanderen
Copyright (C) 2007 StatPro Italia srl
Copyright (C) 2015, 2016 Peter Caspers
Copyright (C) 2015 Thema Consulting SA
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mclongstaffschwartzengine.hpp
\brief Longstaff Schwartz Monte Carlo engine for early exercise options
*/
#ifndef quantlib_mc_longstaff_schwartz_engine_hpp
#define quantlib_mc_longstaff_schwartz_engine_hpp
#include <ql/exercise.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/methods/montecarlo/longstaffschwartzpathpricer.hpp>
#include <boost/make_shared.hpp>
namespace QuantLib {
//! Longstaff-Schwarz Monte Carlo engine for early exercise options
/*! References:
Francis Longstaff, Eduardo Schwartz, 2001. Valuing American Options
by Simulation: A Simple Least-Squares Approach, The Review of
Financial Studies, Volume 14, No. 1, 113-147
\test the correctness of the returned value is tested by
reproducing results available in web/literature
*/
template <class GenericEngine, template <class> class MC,
class RNG, class S = Statistics, class RNG_Calibration = RNG>
class MCLongstaffSchwartzEngine : public GenericEngine,
public McSimulation<MC,RNG,S> {
public:
typedef typename MC<RNG>::path_type path_type;
typedef typename McSimulation<MC,RNG,S>::stats_type
stats_type;
typedef typename McSimulation<MC,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<MC,RNG,S>::path_generator_type
path_generator_type;
typedef
typename McSimulation<MC, RNG_Calibration, S>::path_generator_type
path_generator_type_calibration;
/*! If the parameters brownianBridge and antitheticVariate are
not given they are chosen to be identical to the respective
parameters for pricing; the seed for calibration is chosen
to be zero if the pricing seed is zero and otherwise as the
pricing seed plus some offset to avoid identical paths in
calibration and pricing; note however that this has no effect
for low discrepancy RNGs usually, it is therefore recommended
to use pseudo random generators for the calibration phase always
(and possibly quasi monte carlo in the subsequent pricing). */
MCLongstaffSchwartzEngine(
const boost::shared_ptr<StochasticProcess>& process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples = Null<Size>(),
boost::optional<bool> brownianBridgeCalibration = boost::none,
boost::optional<bool> antitheticVariateCalibration = boost::none,
BigNatural seedCalibration = Null<Size>());
void calculate() const;
protected:
virtual boost::shared_ptr<LongstaffSchwartzPathPricer<path_type> >
lsmPathPricer() const = 0;
TimeGrid timeGrid() const;
boost::shared_ptr<path_pricer_type> pathPricer() const;
boost::shared_ptr<path_generator_type> pathGenerator() const;
boost::shared_ptr<StochasticProcess> process_;
const Size timeSteps_;
const Size timeStepsPerYear_;
const bool brownianBridge_;
const Size requiredSamples_;
const Real requiredTolerance_;
const Size maxSamples_;
const BigNatural seed_;
const Size nCalibrationSamples_;
const bool brownianBridgeCalibration_;
const bool antitheticVariateCalibration_;
const BigNatural seedCalibration_;
mutable boost::shared_ptr<LongstaffSchwartzPathPricer<path_type> >
pathPricer_;
mutable boost::shared_ptr<MonteCarloModel<MC, RNG_Calibration, S> >
mcModelCalibration_;
};
template <class GenericEngine, template <class> class MC,
class RNG, class S, class RNG_Calibration>
inline MCLongstaffSchwartzEngine<GenericEngine,MC,RNG,S,RNG_Calibration>::
MCLongstaffSchwartzEngine(
const boost::shared_ptr<StochasticProcess>& process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples,
boost::optional<bool> brownianBridgeCalibration,
boost::optional<bool> antitheticVariateCalibration,
BigNatural seedCalibration)
: McSimulation<MC,RNG,S> (antitheticVariate, controlVariate),
process_ (process),
timeSteps_ (timeSteps),
timeStepsPerYear_ (timeStepsPerYear),
brownianBridge_ (brownianBridge),
requiredSamples_ (requiredSamples),
requiredTolerance_ (requiredTolerance),
maxSamples_ (maxSamples),
seed_ (seed),
nCalibrationSamples_( (nCalibrationSamples == Null<Size>())
? 2048 : nCalibrationSamples),
brownianBridgeCalibration_ (brownianBridgeCalibration ?
*brownianBridgeCalibration : brownianBridge),
antitheticVariateCalibration_(antitheticVariateCalibration ?
*antitheticVariateCalibration : antitheticVariate),
seedCalibration_(seedCalibration != Null<Real>() ?
seedCalibration : (seed == 0 ? 0 : seed+1768237423L))
{
QL_REQUIRE(timeSteps != Null<Size>() ||
timeStepsPerYear != Null<Size>(),
"no time steps provided");
QL_REQUIRE(timeSteps == Null<Size>() ||
timeStepsPerYear == Null<Size>(),
"both time steps and time steps per year were provided");
QL_REQUIRE(timeSteps != 0,
"timeSteps must be positive, " << timeSteps <<
" not allowed");
QL_REQUIRE(timeStepsPerYear != 0,
"timeStepsPerYear must be positive, " << timeStepsPerYear <<
" not allowed");
this->registerWith(process_);
}
template <class GenericEngine, template <class> class MC, class RNG,
class S, class RNG_Calibration>
inline boost::shared_ptr<typename MCLongstaffSchwartzEngine<
GenericEngine, MC, RNG, S, RNG_Calibration>::path_pricer_type>
MCLongstaffSchwartzEngine<GenericEngine, MC, RNG, S,
RNG_Calibration>::pathPricer() const {
QL_REQUIRE(pathPricer_, "path pricer unknown");
return pathPricer_;
}
template <class GenericEngine, template <class> class MC, class RNG,
class S, class RNG_Calibration>
inline void MCLongstaffSchwartzEngine<GenericEngine, MC, RNG, S,
RNG_Calibration>::calculate() const {
// calibration
pathPricer_ = this->lsmPathPricer();
Size dimensions = process_->factors();
TimeGrid grid = this->timeGrid();
typename RNG_Calibration::rsg_type generator =
RNG_Calibration::make_sequence_generator(
dimensions * (grid.size() - 1), seedCalibration_);
boost::shared_ptr<path_generator_type_calibration>
pathGeneratorCalibration =
boost::make_shared<path_generator_type_calibration>(
process_, grid, generator, brownianBridgeCalibration_);
mcModelCalibration_ =
boost::shared_ptr<MonteCarloModel<MC, RNG_Calibration, S> >(
new MonteCarloModel<MC, RNG_Calibration, S>(
pathGeneratorCalibration, pathPricer_, stats_type(),
this->antitheticVariateCalibration_));
mcModelCalibration_->addSamples(nCalibrationSamples_);
pathPricer_->calibrate();
// pricing
McSimulation<MC,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
this->results_.value = this->mcModel_->sampleAccumulator().mean();
this->results_.additionalResults["exerciseProbability"] =
this->pathPricer_->exerciseProbability();
if (RNG::allowsErrorEstimate) {
this->results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
}
template <class GenericEngine, template <class> class MC, class RNG,
class S, class RNG_Calibration>
inline TimeGrid
MCLongstaffSchwartzEngine<GenericEngine, MC, RNG, S,
RNG_Calibration>::timeGrid() const {
std::vector<Time> requiredTimes;
if (this->arguments_.exercise->type() == Exercise::American) {
Date lastExerciseDate = this->arguments_.exercise->lastDate();
requiredTimes.push_back(process_->time(lastExerciseDate));
} else {
for (Size i = 0; i < this->arguments_.exercise->dates().size();
++i) {
Time t = process_->time(this->arguments_.exercise->date(i));
if (t > 0.0)
requiredTimes.push_back(t);
}
}
if (this->timeSteps_ != Null<Size>()) {
return TimeGrid(requiredTimes.begin(), requiredTimes.end(),
this->timeSteps_);
} else if (this->timeStepsPerYear_ != Null<Size>()) {
Size steps = static_cast<Size>(this->timeStepsPerYear_ *
requiredTimes.back());
return TimeGrid(requiredTimes.begin(), requiredTimes.end(),
std::max<Size>(steps, 1));
} else {
QL_FAIL("time steps not specified");
}
}
template <class GenericEngine, template <class> class MC, class RNG,
class S, class RNG_Calibration>
inline boost::shared_ptr<typename MCLongstaffSchwartzEngine<
GenericEngine, MC, RNG, S, RNG_Calibration>::path_generator_type>
MCLongstaffSchwartzEngine<GenericEngine, MC, RNG, S,
RNG_Calibration>::pathGenerator() const {
Size dimensions = process_->factors();
TimeGrid grid = this->timeGrid();
typename RNG::rsg_type generator =
RNG::make_sequence_generator(dimensions*(grid.size()-1),seed_);
return boost::shared_ptr<path_generator_type>(
new path_generator_type(process_,
grid, generator, brownianBridge_));
}
}
#endif
|