/usr/include/ql/pricingengines/barrier/mcbarrierengine.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003, 2004 Neil Firth
Copyright (C) 2003, 2004 Ferdinando Ametrano
Copyright (C) 2003, 2004, 2005, 2007, 2008 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mcbarrierengine.hpp
\brief Monte Carlo barrier option engines
*/
#ifndef quantlib_mc_barrier_engines_hpp
#define quantlib_mc_barrier_engines_hpp
#include <ql/instruments/barrieroption.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/exercise.hpp>
namespace QuantLib {
//! Pricing engine for barrier options using Monte Carlo simulation
/*! Uses the Brownian-bridge correction for the barrier found in
<i>
Going to Extremes: Correcting Simulation Bias in Exotic
Option Valuation - D.R. Beaglehole, P.H. Dybvig and G. Zhou
Financial Analysts Journal; Jan/Feb 1997; 53, 1. pg. 62-68
</i>
and
<i>
Simulating path-dependent options: A new approach -
M. El Babsiri and G. Noel
Journal of Derivatives; Winter 1998; 6, 2; pg. 65-83
</i>
\ingroup barrierengines
\test the correctness of the returned value is tested by
reproducing results available in literature.
*/
template <class RNG = PseudoRandom, class S = Statistics>
class MCBarrierEngine : public BarrierOption::engine,
public McSimulation<SingleVariate,RNG,S> {
public:
typedef
typename McSimulation<SingleVariate,RNG,S>::path_generator_type
path_generator_type;
typedef typename McSimulation<SingleVariate,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<SingleVariate,RNG,S>::stats_type
stats_type;
// constructor
MCBarrierEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
bool isBiased,
BigNatural seed);
void calculate() const {
Real spot = process_->x0();
QL_REQUIRE(spot >= 0.0, "negative or null underlying given");
QL_REQUIRE(!triggered(spot), "barrier touched");
McSimulation<SingleVariate,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
results_.value = this->mcModel_->sampleAccumulator().mean();
if (RNG::allowsErrorEstimate)
results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
protected:
// McSimulation implementation
TimeGrid timeGrid() const;
boost::shared_ptr<path_generator_type> pathGenerator() const {
TimeGrid grid = timeGrid();
typename RNG::rsg_type gen =
RNG::make_sequence_generator(grid.size()-1,seed_);
return boost::shared_ptr<path_generator_type>(
new path_generator_type(process_,
grid, gen, brownianBridge_));
}
boost::shared_ptr<path_pricer_type> pathPricer() const;
// data members
boost::shared_ptr<GeneralizedBlackScholesProcess> process_;
Size timeSteps_, timeStepsPerYear_;
Size requiredSamples_, maxSamples_;
Real requiredTolerance_;
bool isBiased_;
bool brownianBridge_;
BigNatural seed_;
};
//! Monte Carlo barrier-option engine factory
template <class RNG = PseudoRandom, class S = Statistics>
class MakeMCBarrierEngine {
public:
MakeMCBarrierEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>&);
// named parameters
MakeMCBarrierEngine& withSteps(Size steps);
MakeMCBarrierEngine& withStepsPerYear(Size steps);
MakeMCBarrierEngine& withBrownianBridge(bool b = true);
MakeMCBarrierEngine& withAntitheticVariate(bool b = true);
MakeMCBarrierEngine& withSamples(Size samples);
MakeMCBarrierEngine& withAbsoluteTolerance(Real tolerance);
MakeMCBarrierEngine& withMaxSamples(Size samples);
MakeMCBarrierEngine& withBias(bool b = true);
MakeMCBarrierEngine& withSeed(BigNatural seed);
// conversion to pricing engine
operator boost::shared_ptr<PricingEngine>() const;
private:
boost::shared_ptr<GeneralizedBlackScholesProcess> process_;
bool brownianBridge_, antithetic_, biased_;
Size steps_, stepsPerYear_, samples_, maxSamples_;
Real tolerance_;
BigNatural seed_;
};
class BarrierPathPricer : public PathPricer<Path> {
public:
BarrierPathPricer(
Barrier::Type barrierType,
Real barrier,
Real rebate,
Option::Type type,
Real strike,
const std::vector<DiscountFactor>& discounts,
const boost::shared_ptr<StochasticProcess1D>& diffProcess,
const PseudoRandom::ursg_type& sequenceGen);
Real operator()(const Path& path) const;
private:
Barrier::Type barrierType_;
Real barrier_;
Real rebate_;
boost::shared_ptr<StochasticProcess1D> diffProcess_;
PseudoRandom::ursg_type sequenceGen_;
PlainVanillaPayoff payoff_;
std::vector<DiscountFactor> discounts_;
};
class BiasedBarrierPathPricer : public PathPricer<Path> {
public:
BiasedBarrierPathPricer(Barrier::Type barrierType,
Real barrier,
Real rebate,
Option::Type type,
Real strike,
const std::vector<DiscountFactor>& discounts);
Real operator()(const Path& path) const;
private:
Barrier::Type barrierType_;
Real barrier_;
Real rebate_;
PlainVanillaPayoff payoff_;
std::vector<DiscountFactor> discounts_;
};
// template definitions
template <class RNG, class S>
inline MCBarrierEngine<RNG,S>::MCBarrierEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
bool isBiased,
BigNatural seed)
: McSimulation<SingleVariate,RNG,S>(antitheticVariate, false),
process_(process), timeSteps_(timeSteps),
timeStepsPerYear_(timeStepsPerYear),
requiredSamples_(requiredSamples), maxSamples_(maxSamples),
requiredTolerance_(requiredTolerance),
isBiased_(isBiased),
brownianBridge_(brownianBridge), seed_(seed) {
QL_REQUIRE(timeSteps != Null<Size>() ||
timeStepsPerYear != Null<Size>(),
"no time steps provided");
QL_REQUIRE(timeSteps == Null<Size>() ||
timeStepsPerYear == Null<Size>(),
"both time steps and time steps per year were provided");
QL_REQUIRE(timeSteps != 0,
"timeSteps must be positive, " << timeSteps <<
" not allowed");
QL_REQUIRE(timeStepsPerYear != 0,
"timeStepsPerYear must be positive, " << timeStepsPerYear <<
" not allowed");
registerWith(process_);
}
template <class RNG, class S>
inline TimeGrid MCBarrierEngine<RNG,S>::timeGrid() const {
Time residualTime = process_->time(arguments_.exercise->lastDate());
if (timeSteps_ != Null<Size>()) {
return TimeGrid(residualTime, timeSteps_);
} else if (timeStepsPerYear_ != Null<Size>()) {
Size steps = static_cast<Size>(timeStepsPerYear_*residualTime);
return TimeGrid(residualTime, std::max<Size>(steps, 1));
} else {
QL_FAIL("time steps not specified");
}
}
template <class RNG, class S>
inline
boost::shared_ptr<typename MCBarrierEngine<RNG,S>::path_pricer_type>
MCBarrierEngine<RNG,S>::pathPricer() const {
boost::shared_ptr<PlainVanillaPayoff> payoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-plain payoff given");
TimeGrid grid = timeGrid();
std::vector<DiscountFactor> discounts(grid.size());
for (Size i=0; i<grid.size(); i++)
discounts[i] = process_->riskFreeRate()->discount(grid[i]);
// do this with template parameters?
if (isBiased_) {
return boost::shared_ptr<
typename MCBarrierEngine<RNG,S>::path_pricer_type>(
new BiasedBarrierPathPricer(
arguments_.barrierType,
arguments_.barrier,
arguments_.rebate,
payoff->optionType(),
payoff->strike(),
discounts));
} else {
PseudoRandom::ursg_type sequenceGen(grid.size()-1,
PseudoRandom::urng_type(5));
return boost::shared_ptr<
typename MCBarrierEngine<RNG,S>::path_pricer_type>(
new BarrierPathPricer(
arguments_.barrierType,
arguments_.barrier,
arguments_.rebate,
payoff->optionType(),
payoff->strike(),
discounts,
process_,
sequenceGen));
}
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>::MakeMCBarrierEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process)
: process_(process), brownianBridge_(false), antithetic_(false),
biased_(false), steps_(Null<Size>()), stepsPerYear_(Null<Size>()),
samples_(Null<Size>()), maxSamples_(Null<Size>()),
tolerance_(Null<Real>()), seed_(0) {}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withSteps(Size steps) {
steps_ = steps;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withStepsPerYear(Size steps) {
stepsPerYear_ = steps;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withBrownianBridge(bool brownianBridge) {
brownianBridge_ = brownianBridge;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withAntitheticVariate(bool b) {
antithetic_ = b;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withSamples(Size samples) {
QL_REQUIRE(tolerance_ == Null<Real>(),
"tolerance already set");
samples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withAbsoluteTolerance(Real tolerance) {
QL_REQUIRE(samples_ == Null<Size>(),
"number of samples already set");
QL_REQUIRE(RNG::allowsErrorEstimate,
"chosen random generator policy "
"does not allow an error estimate");
tolerance_ = tolerance;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withMaxSamples(Size samples) {
maxSamples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withBias(bool biased) {
biased_ = biased;
return *this;
}
template <class RNG, class S>
inline MakeMCBarrierEngine<RNG,S>&
MakeMCBarrierEngine<RNG,S>::withSeed(BigNatural seed) {
seed_ = seed;
return *this;
}
template <class RNG, class S>
inline
MakeMCBarrierEngine<RNG,S>::operator boost::shared_ptr<PricingEngine>()
const {
QL_REQUIRE(steps_ != Null<Size>() || stepsPerYear_ != Null<Size>(),
"number of steps not given");
QL_REQUIRE(steps_ == Null<Size>() || stepsPerYear_ == Null<Size>(),
"number of steps overspecified");
return boost::shared_ptr<PricingEngine>(new
MCBarrierEngine<RNG,S>(process_,
steps_,
stepsPerYear_,
brownianBridge_,
antithetic_,
samples_, tolerance_,
maxSamples_,
biased_,
seed_));
}
}
#endif
|