/usr/include/ql/pricingengines/barrier/binomialbarrierengine.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Thema Consulting SA
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file binomialbarrierengine.hpp
\brief Binomial Barrier option engine
*/
#ifndef quantlib_binomial_barrier_engine_hpp
#define quantlib_binomial_barrier_engine_hpp
#include <ql/methods/lattices/binomialtree.hpp>
#include <ql/methods/lattices/bsmlattice.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/pricingengines/barrier/discretizedbarrieroption.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
namespace QuantLib {
//! Pricing engine for barrier options using binomial trees
/*! \ingroup barrierengines
\note Timesteps for Cox-Ross-Rubinstein trees are adjusted using Boyle and Lau algorithm.
See Journal of Derivatives, 1/1994,
"Bumping up against the barrier with the binomial method"
\test the correctness of the returned values is tested by
checking it against analytic european results.
*/
template <class T, class D>
class BinomialBarrierEngine : public BarrierOption::engine {
public:
/*! \param maxTimeSteps is used to limit timeSteps when using Boyle-Lau
optimization. If zero (the default) the maximum number of
steps is calculated by an heuristic: anything when < 1000,
otherwise no more than 5*timeSteps.
If maxTimeSteps is equal to timeSteps Boyle-Lau is disabled.
Likewise if the lattice is not CoxRossRubinstein Boyle-Lau is
disabled and maxTimeSteps ignored.
*/
BinomialBarrierEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
Size timeSteps,
Size maxTimeSteps=0)
: process_(process), timeSteps_(timeSteps), maxTimeSteps_(maxTimeSteps) {
QL_REQUIRE(timeSteps>0,
"timeSteps must be positive, " << timeSteps <<
" not allowed");
QL_REQUIRE(maxTimeSteps==0 || maxTimeSteps>=timeSteps,
"maxTimeSteps must be zero or "
"greater than or equal to timeSteps, "
<< maxTimeSteps << " not allowed");
if (maxTimeSteps_==0)
maxTimeSteps_ = std::max( (Size)1000, timeSteps_*5);
registerWith(process_);
}
void calculate() const;
private:
boost::shared_ptr<GeneralizedBlackScholesProcess> process_;
Size timeSteps_;
Size maxTimeSteps_;
};
// template definitions
template <class T, class D>
void BinomialBarrierEngine<T,D>::calculate() const {
DayCounter rfdc = process_->riskFreeRate()->dayCounter();
DayCounter divdc = process_->dividendYield()->dayCounter();
DayCounter voldc = process_->blackVolatility()->dayCounter();
Calendar volcal = process_->blackVolatility()->calendar();
Real s0 = process_->stateVariable()->value();
QL_REQUIRE(s0 > 0.0, "negative or null underlying given");
Volatility v = process_->blackVolatility()->blackVol(
arguments_.exercise->lastDate(), s0);
Date maturityDate = arguments_.exercise->lastDate();
Rate r = process_->riskFreeRate()->zeroRate(maturityDate,
rfdc, Continuous, NoFrequency);
Rate q = process_->dividendYield()->zeroRate(maturityDate,
divdc, Continuous, NoFrequency);
Date referenceDate = process_->riskFreeRate()->referenceDate();
// binomial trees with constant coefficient
Handle<YieldTermStructure> flatRiskFree(
boost::shared_ptr<YieldTermStructure>(
new FlatForward(referenceDate, r, rfdc)));
Handle<YieldTermStructure> flatDividends(
boost::shared_ptr<YieldTermStructure>(
new FlatForward(referenceDate, q, divdc)));
Handle<BlackVolTermStructure> flatVol(
boost::shared_ptr<BlackVolTermStructure>(
new BlackConstantVol(referenceDate, volcal, v, voldc)));
boost::shared_ptr<StrikedTypePayoff> payoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-striked payoff given");
Time maturity = rfdc.yearFraction(referenceDate, maturityDate);
boost::shared_ptr<StochasticProcess1D> bs(
new GeneralizedBlackScholesProcess(
process_->stateVariable(),
flatDividends, flatRiskFree, flatVol));
// correct timesteps to ensure a (local) minimum, using Boyle and Lau
// approach. See Journal of Derivatives, 1/1994,
// "Bumping up against the barrier with the binomial method"
// Note: this approach works only for CoxRossRubinstein lattices, so
// is disabled if T is not a CoxRossRubinstein or derived from it.
Size optimum_steps = timeSteps_;
if (boost::is_base_of<CoxRossRubinstein, T>::value &&
maxTimeSteps_ > timeSteps_ && s0 > 0 && arguments_.barrier > 0) {
Real divisor;
if (s0 > arguments_.barrier)
divisor = std::pow(std::log(s0 / arguments_.barrier), 2);
else
divisor = std::pow(std::log(arguments_.barrier / s0), 2);
if (!close(divisor,0)) {
for (Size i=1; i < timeSteps_ ; ++i) {
Size optimum = Size(( i*i * v*v * maturity) / divisor);
if (timeSteps_ < optimum) {
optimum_steps = optimum;
break; // found first minimum with iterations>=timesteps
}
}
}
if (optimum_steps > maxTimeSteps_)
optimum_steps = maxTimeSteps_; // too high, limit
}
TimeGrid grid(maturity, optimum_steps);
boost::shared_ptr<T> tree(new T(bs, maturity, optimum_steps,
payoff->strike()));
boost::shared_ptr<BlackScholesLattice<T> > lattice(
new BlackScholesLattice<T>(tree, r, maturity, optimum_steps));
D option(arguments_, *process_, grid);
option.initialize(lattice, maturity);
// Partial derivatives calculated from various points in the
// binomial tree
// (see J.C.Hull, "Options, Futures and other derivatives", 6th edition, pp 397/398)
// Rollback to third-last step, and get underlying prices (s2) &
// option values (p2) at this point
option.rollback(grid[2]);
Array va2(option.values());
QL_ENSURE(va2.size() == 3, "Expect 3 nodes in grid at second step");
Real p2u = va2[2]; // up
Real p2m = va2[1]; // mid
Real p2d = va2[0]; // down (low)
Real s2u = lattice->underlying(2, 2); // up price
Real s2m = lattice->underlying(2, 1); // middle price
Real s2d = lattice->underlying(2, 0); // down (low) price
// calculate gamma by taking the first derivate of the two deltas
Real delta2u = (p2u - p2m)/(s2u-s2m);
Real delta2d = (p2m-p2d)/(s2m-s2d);
Real gamma = (delta2u - delta2d) / ((s2u-s2d)/2);
// Rollback to second-last step, and get option values (p1) at
// this point
option.rollback(grid[1]);
Array va(option.values());
QL_ENSURE(va.size() == 2, "Expect 2 nodes in grid at first step");
Real p1u = va[1];
Real p1d = va[0];
Real s1u = lattice->underlying(1, 1); // up (high) price
Real s1d = lattice->underlying(1, 0); // down (low) price
Real delta = (p1u - p1d) / (s1u - s1d);
// Finally, rollback to t=0
option.rollback(0.0);
Real p0 = option.presentValue();
// Store results
results_.value = p0;
results_.delta = delta;
results_.gamma = gamma;
// theta can be approximated by calculating the numerical derivative
// between mid value at third-last step and at t0. The underlying price
// is the same, only time varies.
results_.theta = (p2m - p0) / grid[2];
}
}
#endif
|