/usr/include/ql/models/volatility/garch.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Joseph Wang
Copyright (C) 2012 Liquidnet Holdings, Inc.
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file garch.hpp
\brief GARCH volatility model
*/
#ifndef quantlib_garch_volatility_model_hpp
#define quantlib_garch_volatility_model_hpp
#include <ql/volatilitymodel.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <vector>
namespace QuantLib {
//! GARCH volatility model
/*! Volatilities are assumed to be expressed on an annual basis.
*/
class Garch11 : public VolatilityCompositor {
public:
typedef TimeSeries<Volatility> time_series;
typedef time_series::const_iterator const_iterator;
typedef time_series::const_value_iterator const_value_iterator;
enum Mode {
MomentMatchingGuess, /*!< The initial guess is a moment
matching estimates for
mean(r2), acf(0), and acf(1). */
GammaGuess, /*!< The initial guess is an
estimate of gamma based on the
property:
acf(i+1) = gamma*acf(i) for i > 1. */
BestOfTwo, /*!< The best of the two above modes */
DoubleOptimization /*!< Double optimization */
};
//! \name Constructors
//@{
Garch11(Real a, Real b, Real vl)
: alpha_(a), beta_(b), gamma_(1 - a - b),
vl_(vl), logLikelihood_(0), mode_(BestOfTwo) {}
Garch11(const time_series& qs, Mode mode = BestOfTwo)
: alpha_(0), beta_(0), vl_(0), logLikelihood_(0), mode_(mode) {
calibrate(qs);
};
//@}
//! \name Inspectors
//@{
Real alpha() const { return alpha_; }
Real beta() const { return beta_; }
Real omega() const { return vl_ * gamma_; }
Real ltVol() const { return vl_; }
Real logLikelihood() const { return logLikelihood_; }
Mode mode() const { return mode_; }
//@}
//! \name VolatilityCompositor interface
//@{
time_series calculate(const time_series& quoteSeries) {
return calculate(quoteSeries, alpha(), beta(), omega());
}
void calibrate(const time_series& quoteSeries) {
calibrate(quoteSeries.cbegin_values(), quoteSeries.cend_values());
}
//@}
//! \name Additional interface
//@{
static time_series calculate(const time_series& quoteSeries,
Real alpha, Real beta, Real omega);
void calibrate(const time_series& quoteSeries,
OptimizationMethod& method,
const EndCriteria& endCriteria) {
calibrate(quoteSeries.cbegin_values(), quoteSeries.cend_values(),
method, endCriteria);
}
void calibrate(const time_series& quoteSeries,
OptimizationMethod& method,
const EndCriteria& endCriteria,
const Array& initialGuess) {
calibrate(quoteSeries.cbegin_values(), quoteSeries.cend_values(),
method, endCriteria, initialGuess);
}
template <typename ForwardIterator>
void calibrate(ForwardIterator begin, ForwardIterator end) {
std::vector<Volatility> r2;
Real mean_r2 = to_r2(begin, end, r2);
boost::shared_ptr<Problem> p =
calibrate_r2(mode_, r2, mean_r2, alpha_, beta_, vl_);
gamma_ = 1 - alpha_ - beta_;
vl_ /= gamma_;
logLikelihood_ = p ? -p->functionValue() :
-costFunction(begin, end);
}
template <typename ForwardIterator>
void calibrate(ForwardIterator begin, ForwardIterator end,
OptimizationMethod& method,
EndCriteria endCriteria) {
std::vector<Volatility> r2;
Real mean_r2 = to_r2(begin, end, r2);
boost::shared_ptr<Problem> p =
calibrate_r2(mode_, r2, mean_r2, method,
endCriteria, alpha_, beta_, vl_);
gamma_ = 1 - alpha_ - beta_;
vl_ /= gamma_;
logLikelihood_ = p ? -p->functionValue() :
-costFunction(begin, end);
}
template <typename ForwardIterator>
void calibrate(ForwardIterator begin, ForwardIterator end,
OptimizationMethod& method,
EndCriteria endCriteria,
const Array& initialGuess) {
std::vector<Volatility> r2;
to_r2(begin, end, r2);
boost::shared_ptr<Problem> p =
calibrate_r2(r2, method, endCriteria, initialGuess,
alpha_, beta_, vl_);
gamma_ = 1 - alpha_ - beta_;
vl_ /= gamma_;
logLikelihood_ = p ? -p->functionValue() :
-costFunction(begin, end);
}
Real forecast(Real r, Real sigma2) const {
return gamma_* vl_ + alpha_ * r * r + beta_ * sigma2;
}
// a helper for calculation of r^2 and <r^2>
template <typename InputIterator>
static Real to_r2(InputIterator begin, InputIterator end,
std::vector<Volatility>& r2) {
Real u2(0.0), mean_r2(0.0), w(1.0);
for (; begin != end; ++begin) {
u2 = *begin; u2 *= u2;
mean_r2 = (1.0 - w) * mean_r2 + w * u2;
r2.push_back(u2);
w /= (w + 1.0);
}
return mean_r2;
}
/*! calibrates GARCH for r^2 */
static boost::shared_ptr<Problem> calibrate_r2(
Mode mode,
const std::vector<Volatility>& r2,
Real mean_r2,
Real& alpha,
Real& beta,
Real& omega);
/*! calibrates GARCH for r^2 with user-defined optimization
method and end criteria */
static boost::shared_ptr<Problem> calibrate_r2(
Mode mode,
const std::vector<Volatility>& r2,
Real mean_r2,
OptimizationMethod& method,
const EndCriteria& endCriteria,
Real& alpha,
Real& beta,
Real& omega);
/*! calibrates GARCH for r^2 with user-defined optimization
method, end criteria and initial guess */
static boost::shared_ptr<Problem> calibrate_r2(
const std::vector<Volatility>& r2,
Real mean_r2,
OptimizationMethod& method,
const EndCriteria& endCriteria,
const Array& initialGuess,
Real& alpha,
Real& beta,
Real& omega);
/*! calibrates GARCH for r^2 with user-defined optimization
method, end criteria and initial guess */
static boost::shared_ptr<Problem> calibrate_r2(
const std::vector<Volatility> &r2,
OptimizationMethod& method,
const EndCriteria& endCriteria,
const Array& initialGuess,
Real& alpha,
Real& beta,
Real& omega);
/*! calibrates GARCH for r^2 with user-defined optimization
method, end criteria, constraints and initial guess */
static boost::shared_ptr<Problem> calibrate_r2(
const std::vector<Volatility>& r2,
Real mean_r2,
OptimizationMethod& method,
Constraint& constraints,
const EndCriteria& endCriteria,
const Array& initialGuess,
Real& alpha,
Real& beta,
Real& omega);
static boost::shared_ptr<Problem> calibrate_r2(
const std::vector<Volatility> &r2,
OptimizationMethod& method,
Constraint& constraints,
const EndCriteria& endCriteria,
const Array& initialGuess,
Real& alpha,
Real& beta,
Real& omega);
template<class InputIterator>
static Real costFunction(InputIterator begin, InputIterator end,
Real alpha, Real beta, Real omega) {
Real retval(0.0);
Real u2(0.0), sigma2(0.0);
Size N = 0;
for (; begin != end; ++begin, ++N) {
sigma2 = omega + alpha * u2 + beta * sigma2;
u2 = *begin; u2 *= u2;
retval += std::log(sigma2) + u2 / sigma2;
}
return N > 0 ? retval / (2*N) : 0.0;
}
//@}
private:
Real alpha_, beta_, gamma_, vl_;
Real logLikelihood_;
Mode mode_;
template<class InputIterator>
Real costFunction(InputIterator begin, InputIterator end) const {
return costFunction(begin, end, alpha(), beta(), omega());
}
};
}
#endif
|