/usr/include/ql/methods/lattices/trinomialtree.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file trinomialtree.hpp
\brief Trinomial tree class
*/
#ifndef quantlib_trinomial_tree_hpp
#define quantlib_trinomial_tree_hpp
#include <ql/methods/lattices/tree.hpp>
#include <ql/timegrid.hpp>
namespace QuantLib {
class StochasticProcess1D;
//! Recombining trinomial tree class
/*! This class defines a recombining trinomial tree approximating a
1-D stochastic process.
\warning The diffusion term of the SDE must be independent of the
underlying process.
\ingroup lattices
*/
class TrinomialTree : public Tree<TrinomialTree> {
class Branching;
public:
enum Branches { branches = 3 };
TrinomialTree(const boost::shared_ptr<StochasticProcess1D>& process,
const TimeGrid& timeGrid,
bool isPositive = false);
Real dx(Size i) const { return dx_[i]; }
const TimeGrid& timeGrid() const { return timeGrid_; }
Size size(Size i) const;
Real underlying(Size i, Size index) const;
Size descendant(Size i, Size index, Size branch) const;
Real probability(Size i, Size index, Size branch) const;
protected:
std::vector<Branching> branchings_;
Real x0_;
std::vector<Real> dx_;
TimeGrid timeGrid_;
private:
/* Branching scheme for a trinomial node. Each node has three
descendants, with the middle branch linked to the node
which is closest to the expectation of the variable. */
class Branching {
public:
Branching();
Size descendant(Size index, Size branch) const;
Real probability(Size index, Size branch) const;
Size size() const;
Integer jMin() const;
Integer jMax() const;
void add(Integer k, Real p1, Real p2, Real p3);
private:
std::vector<Integer> k_;
std::vector<std::vector<Real> > probs_;
Integer kMin_, jMin_, kMax_, jMax_;
};
};
// inline definitions
inline Size TrinomialTree::size(Size i) const {
return i==0 ? 1 : branchings_[i-1].size();
}
inline Real TrinomialTree::underlying(Size i, Size index) const {
if (i==0)
return x0_;
else
return x0_ + (branchings_[i-1].jMin() +
static_cast<Real>(index))*dx(i);
}
inline Size TrinomialTree::descendant(Size i, Size index,
Size branch) const {
return branchings_[i].descendant(index, branch);
}
inline Real TrinomialTree::probability(Size i, Size j, Size b) const {
return branchings_[i].probability(j, b);
}
inline TrinomialTree::Branching::Branching()
: probs_(3), kMin_(QL_MAX_INTEGER), jMin_(QL_MAX_INTEGER),
kMax_(QL_MIN_INTEGER), jMax_(QL_MIN_INTEGER) {}
inline Size TrinomialTree::Branching::descendant(Size index,
Size branch) const {
return k_[index] - jMin_ - 1 + branch;
}
inline Real TrinomialTree::Branching::probability(Size index,
Size branch) const {
return probs_[branch][index];
}
inline Size TrinomialTree::Branching::size() const {
return jMax_ - jMin_ + 1;
}
inline Integer TrinomialTree::Branching::jMin() const {
return jMin_;
}
inline Integer TrinomialTree::Branching::jMax() const {
return jMax_;
}
inline void TrinomialTree::Branching::add(Integer k,
Real p1, Real p2, Real p3) {
// store
k_.push_back(k);
probs_[0].push_back(p1);
probs_[1].push_back(p2);
probs_[2].push_back(p3);
// maintain invariants
kMin_ = std::min(kMin_, k);
jMin_ = kMin_ - 1;
kMax_ = std::max(kMax_, k);
jMax_ = kMax_ + 1;
}
}
#endif
|