This file is indexed.

/usr/include/ql/methods/lattices/lattice.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
 Copyright (C) 2004, 2005 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file lattice.hpp
    \brief Tree-based lattice-method class
*/

#ifndef quantlib_tree_based_lattice_hpp
#define quantlib_tree_based_lattice_hpp

#include <ql/numericalmethod.hpp>
#include <ql/discretizedasset.hpp>
#include <ql/patterns/curiouslyrecurring.hpp>

namespace QuantLib {

    //! Tree-based lattice-method base class
    /*! This class defines a lattice method that is able to rollback
        (with discount) a discretized asset object. It will be based
        on one or more trees.

        Derived classes must implement the following interface:
        \code
        public:
          DiscountFactor discount(Size i, Size index) const;
          Size descendant(Size i, Size index, Size branch) const;
          Real probability(Size i, Size index, Size branch) const;
        \endcode
        and may implement the following:
        \code
        public:
          void stepback(Size i,
                        const Array& values,
                        Array& newValues) const;
        \endcode

        \ingroup lattices
    */
    template <class Impl>
    class TreeLattice : public Lattice,
                        public CuriouslyRecurringTemplate<Impl> {
      public:
        TreeLattice(const TimeGrid& timeGrid,
                    Size n)
        : Lattice(timeGrid), n_(n) {
            QL_REQUIRE(n>0, "there is no zeronomial lattice!");
            statePrices_ = std::vector<Array>(1, Array(1, 1.0));
            statePricesLimit_ = 0;
        }

        //! \name Lattice interface
        //@{
        void initialize(DiscretizedAsset&, Time t) const;
        void rollback(DiscretizedAsset&, Time to) const;
        void partialRollback(DiscretizedAsset&, Time to) const;
        //! Computes the present value of an asset using Arrow-Debrew prices
        Real presentValue(DiscretizedAsset&) const;
        //@}

        const Array& statePrices(Size i) const;

        void stepback(Size i,
                      const Array& values,
                      Array& newValues) const;

      protected:
        void computeStatePrices(Size until) const;

        // Arrow-Debrew state prices
        mutable std::vector<Array> statePrices_;

      private:
        Size n_;
        mutable Size statePricesLimit_;
    };


    // template definitions

    template <class Impl>
    void TreeLattice<Impl>::computeStatePrices(Size until) const {
        for (Size i=statePricesLimit_; i<until; i++) {
            statePrices_.push_back(Array(this->impl().size(i+1), 0.0));
            for (Size j=0; j<this->impl().size(i); j++) {
                DiscountFactor disc = this->impl().discount(i,j);
                Real statePrice = statePrices_[i][j];
                for (Size l=0; l<n_; l++) {
                    statePrices_[i+1][this->impl().descendant(i,j,l)] +=
                        statePrice*disc*this->impl().probability(i,j,l);
                }
            }
        }
        statePricesLimit_ = until;
    }

    template <class Impl>
    const Array& TreeLattice<Impl>::statePrices(Size i) const {
        if (i>statePricesLimit_)
            computeStatePrices(i);
        return statePrices_[i];
    }

    template <class Impl>
    inline Real TreeLattice<Impl>::presentValue(DiscretizedAsset& asset) const {
        Size i = t_.index(asset.time());
        return DotProduct(asset.values(), statePrices(i));
    }

    template <class Impl>
    inline void TreeLattice<Impl>::initialize(DiscretizedAsset& asset, Time t) const {
        Size i = t_.index(t);
        asset.time() = t;
        asset.reset(this->impl().size(i));
    }

    template <class Impl>
    inline void TreeLattice<Impl>::rollback(DiscretizedAsset& asset, Time to) const {
        partialRollback(asset,to);
        asset.adjustValues();
    }

    template <class Impl>
    void TreeLattice<Impl>::partialRollback(DiscretizedAsset& asset,
                                            Time to) const {

        Time from = asset.time();

        if (close(from,to))
            return;

        QL_REQUIRE(from > to,
                   "cannot roll the asset back to" << to
                   << " (it is already at t = " << from << ")");

        Integer iFrom = Integer(t_.index(from));
        Integer iTo = Integer(t_.index(to));

        for (Integer i=iFrom-1; i>=iTo; --i) {
            Array newValues(this->impl().size(i));
            this->impl().stepback(i, asset.values(), newValues);
            asset.time() = t_[i];
            asset.values() = newValues;
            // skip the very last adjustment
            if (i != iTo)
                asset.adjustValues();
        }
    }

    template <class Impl>
    void TreeLattice<Impl>::stepback(Size i, const Array& values,
                                     Array& newValues) const {
        #pragma omp parallel for
        for (Size j=0; j<this->impl().size(i); j++) {
            Real value = 0.0;
            for (Size l=0; l<n_; l++) {
                value += this->impl().probability(i,j,l) *
                         values[this->impl().descendant(i,j,l)];
            }
            value *= this->impl().discount(i,j);
            newValues[j] = value;
        }
    }

}


#endif