/usr/include/ql/methods/finitedifferences/trbdf2.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2011 Fabien Le Floc'h
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file trbdf2.hpp
\brief TR-BDF2 scheme for finite difference methods
*/
#ifndef quantlib_trbdf2_hpp
#define quantlib_trbdf2_hpp
#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>
namespace QuantLib {
//! TR-BDF2 scheme for finite difference methods
/*! See <http://ssrn.com/abstract=1648878> for details.
In this implementation, the passed operator must be derived
from either TimeConstantOperator or TimeDependentOperator.
Also, it must implement at least the following interface:
\code
typedef ... array_type;
// copy constructor/assignment
// (these will be provided by the compiler if none is defined)
Operator(const Operator&);
Operator& operator=(const Operator&);
// inspectors
Size size();
// modifiers
void setTime(Time t);
// operator interface
array_type applyTo(const array_type&);
array_type solveFor(const array_type&);
static Operator identity(Size size);
// operator algebra
Operator operator*(Real, const Operator&);
Operator operator+(const Operator&, const Operator&);
Operator operator+(const Operator&, const Operator&);
\endcode
\warning The differential operator must be linear for
this evolver to work.
\ingroup findiff
*/
// NOTE: There is room for performance improvement especially in
// the array manipulation
template <class Operator>
class TRBDF2 {
public:
// typedefs
typedef OperatorTraits<Operator> traits;
typedef typename traits::operator_type operator_type;
typedef typename traits::array_type array_type;
typedef typename traits::bc_set bc_set;
typedef typename traits::condition_type condition_type;
// constructors
TRBDF2(const operator_type& L,
const bc_set& bcs)
: L_(L), I_(operator_type::identity(L.size())),
dt_(0.0), bcs_(bcs), alpha_(2.0-sqrt(2.0)) {}
void step(array_type& a,
Time t);
void setStep(Time dt) {
dt_ = dt;
implicitPart_ = I_ + 0.5*alpha_*dt_*L_;
explicitTrapezoidalPart_ = I_ - 0.5*alpha_*dt_*L_;
explicitBDF2PartFull_ =
-(1.0-alpha_)*(1.0-alpha_)/(alpha_*(2.0-alpha_))*I_;
explicitBDF2PartMid_ = 1.0/(alpha_*(2.0-alpha_))*I_;
}
private:
Real alpha_;
operator_type L_, I_, explicitTrapezoidalPart_,
explicitBDF2PartFull_,explicitBDF2PartMid_, implicitPart_;
Time dt_;
bc_set bcs_;
array_type aInit_;
};
// inline definitions
template <class Operator>
inline void TRBDF2<Operator>::step(array_type& a, Time t) {
Size i;
Array aInit(a.size());
for (i=0; i<a.size();i++) {
aInit[i] = a[i];
}
aInit_ = aInit;
for (i=0; i<bcs_.size(); i++)
bcs_[i]->setTime(t);
//trapezoidal explicit part
if (L_.isTimeDependent()) {
L_.setTime(t);
explicitTrapezoidalPart_ = I_ - 0.5*alpha_*dt_*L_;
}
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyBeforeApplying(explicitTrapezoidalPart_);
a = explicitTrapezoidalPart_.applyTo(a);
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyAfterApplying(a);
// trapezoidal implicit part
if (L_.isTimeDependent()) {
L_.setTime(t-dt_);
implicitPart_ = I_ + 0.5*alpha_*dt_*L_;
}
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyBeforeSolving(implicitPart_,a);
a = implicitPart_.solveFor(a);
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyAfterSolving(a);
// BDF2 explicit part
if (L_.isTimeDependent()) {
L_.setTime(t);
}
for (i=0; i<bcs_.size(); i++) {
bcs_[i]->applyBeforeApplying(explicitBDF2PartFull_);
}
array_type b0 = explicitBDF2PartFull_.applyTo(aInit_);
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyAfterApplying(b0);
for (i=0; i<bcs_.size(); i++) {
bcs_[i]->applyBeforeApplying(explicitBDF2PartMid_);
}
array_type b1 = explicitBDF2PartMid_.applyTo(a);
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyAfterApplying(b1);
a = b0+b1;
// reuse implicit part - works only for alpha=2-sqrt(2)
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyBeforeSolving(implicitPart_,a);
a = implicitPart_.solveFor(a);
for (i=0; i<bcs_.size(); i++)
bcs_[i]->applyAfterSolving(a);
}
}
#endif
|