This file is indexed.

/usr/include/ql/math/statistics/sequencestatistics.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003, 2004, 2005, 2006, 2007 Ferdinando Ametrano

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file sequencestatistics.hpp
    \brief Statistics tools for sequence (vector, list, array) samples
*/

#ifndef quantlib_sequence_statistics_hpp
#define quantlib_sequence_statistics_hpp

#include <ql/math/statistics/statistics.hpp>
#include <ql/math/statistics/incrementalstatistics.hpp>
#include <ql/math/matrix.hpp>

namespace QuantLib {

    //! Statistics analysis of N-dimensional (sequence) data
    /*! It provides 1-dimensional statistics as discrepancy plus
        N-dimensional (sequence) statistics (e.g. mean,
        variance, skewness, kurtosis, etc.) with one component for each
        dimension of the sample space.

        For most of the statistics this class relies on
        the StatisticsType underlying class to provide 1-D methods that
        will be iterated for all the components of the N-D data. These
        lifted methods are the union of all the methods that might be
        requested to the 1-D underlying StatisticsType class, with the
        usual compile-time checks provided by the template approach.

        \test the correctness of the returned values is tested by
              checking them against numerical calculations.
    */
    template <class StatisticsType>
    class GenericSequenceStatistics {
      public:
        // typedefs
        typedef StatisticsType statistics_type;
        typedef std::vector<typename StatisticsType::value_type> value_type;
        // constructor
        GenericSequenceStatistics(Size dimension = 0);
        //! \name inspectors
        //@{
        Size size() const { return dimension_; }
        //@}
        //! \name covariance and correlation
        //@{
        //! returns the covariance Matrix
        Disposable<Matrix> covariance() const;
        //! returns the correlation Matrix
        Disposable<Matrix> correlation() const;
        //@}
        //! \name 1-D inspectors lifted from underlying statistics class
        //@{
        Size samples() const;
        Real weightSum() const;
        //@}
        //! \name N-D inspectors lifted from underlying statistics class
        //@{
        // void argument list
        std::vector<Real> mean() const;
        std::vector<Real> variance() const;
        std::vector<Real> standardDeviation() const;
        std::vector<Real> downsideVariance() const;
        std::vector<Real> downsideDeviation() const;
        std::vector<Real> semiVariance() const;
        std::vector<Real> semiDeviation() const;
        std::vector<Real> errorEstimate() const;
        std::vector<Real> skewness() const;
        std::vector<Real> kurtosis() const;
        std::vector<Real> min() const;
        std::vector<Real> max() const;

        // single argument list
        std::vector<Real> gaussianPercentile(Real y) const;
        std::vector<Real> percentile(Real y) const;

        std::vector<Real> gaussianPotentialUpside(Real percentile) const;
        std::vector<Real> potentialUpside(Real percentile) const;

        std::vector<Real> gaussianValueAtRisk(Real percentile) const;
        std::vector<Real> valueAtRisk(Real percentile) const;

        std::vector<Real> gaussianExpectedShortfall(Real percentile) const;
        std::vector<Real> expectedShortfall(Real percentile) const;

        std::vector<Real> regret(Real target) const;

        std::vector<Real> gaussianShortfall(Real target) const;
        std::vector<Real> shortfall(Real target) const;

        std::vector<Real> gaussianAverageShortfall(Real target) const;
        std::vector<Real> averageShortfall(Real target) const;

        //@}
        //! \name Modifiers
        //@{
        void reset(Size dimension = 0);
        template <class Sequence>
        void add(const Sequence& sample,
                 Real weight = 1.0) {
            add(sample.begin(), sample.end(), weight);
        }
        template <class Iterator>
        void add(Iterator begin,
                 Iterator end,
                 Real weight = 1.0) {
            if (dimension_ == 0) {
                // stat wasn't initialized yet
                QL_REQUIRE(end>begin, "sample error: end<=begin");
                Size dimension = std::distance(begin, end);
                reset(dimension);
            }

            QL_REQUIRE(std::distance(begin, end) == Integer(dimension_),
                       "sample size mismatch: " << dimension_ <<
                       " required, " << std::distance(begin, end) <<
                       " provided");

            quadraticSum_ += weight * outerProduct(begin, end,
                                                   begin, end);

            for (Size i=0; i<dimension_; ++begin, ++i)
                stats_[i].add(*begin, weight);

        }
        //@}
      protected:
        Size dimension_;
        std::vector<statistics_type> stats_;
        mutable std::vector<Real> results_;
        Matrix quadraticSum_;
    };

    //! default multi-dimensional statistics tool
    /*! \test the correctness of the returned values is tested by
              checking them against numerical calculations.
    */
    typedef GenericSequenceStatistics<Statistics> SequenceStatistics;
    typedef GenericSequenceStatistics<IncrementalStatistics> SequenceStatisticsInc;

    // inline definitions

    template <class Stat>
    inline GenericSequenceStatistics<Stat>::GenericSequenceStatistics(Size dimension)
    : dimension_(0) {
        reset(dimension);
    }

    template <class Stat>
    inline Size GenericSequenceStatistics<Stat>::samples() const {
        return (stats_.size() == 0) ? 0 : stats_[0].samples();
    }

    template <class Stat>
    inline Real GenericSequenceStatistics<Stat>::weightSum() const {
        return (stats_.size() == 0) ? 0.0 : stats_[0].weightSum();
    }


    // macros for the implementation of the lifted methods

    // N-D methods' definition with void argument list
    #define DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(METHOD) \
    template <class Stat> \
    std::vector<Real> \
    GenericSequenceStatistics<Stat>::METHOD() const { \
        for (Size i=0; i<dimension_; i++) \
            results_[i] = stats_[i].METHOD(); \
        return results_; \
    }
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(mean)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(variance)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(standardDeviation)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(downsideVariance)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(downsideDeviation)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(semiVariance)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(semiDeviation)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(errorEstimate)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(skewness)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(kurtosis)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(min)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID(max)
    #undef DEFINE_SEQUENCE_STAT_CONST_METHOD_VOID


    // N-D methods' definition with single argument
    #define DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(METHOD) \
    template <class Stat> \
    std::vector<Real> \
    GenericSequenceStatistics<Stat>::METHOD(Real x) const { \
        for (Size i=0; i<dimension_; i++) \
            results_[i] = stats_[i].METHOD(x); \
        return results_; \
    }

    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(gaussianPercentile)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(gaussianPotentialUpside)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(gaussianValueAtRisk)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(gaussianExpectedShortfall)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(gaussianShortfall)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(gaussianAverageShortfall)

    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(percentile)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(potentialUpside)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(valueAtRisk)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(expectedShortfall)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(regret)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(shortfall)
    DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE(averageShortfall)
    #undef DEFINE_SEQUENCE_STAT_CONST_METHOD_DOUBLE


    template <class Stat>
    void GenericSequenceStatistics<Stat>::reset(Size dimension) {
        // (re-)initialize
        if (dimension > 0) {
            if (dimension == dimension_) {
                for (Size i=0; i<dimension_; ++i)
                    stats_[i].reset();
            } else {
                dimension_ = dimension;
                stats_ = std::vector<Stat>(dimension);
                results_ = std::vector<Real>(dimension);
            }
            quadraticSum_ = Matrix(dimension_, dimension_, 0.0);
        } else {
            dimension_ = dimension;
        }
    }

    template <class Stat>
    Disposable<Matrix> GenericSequenceStatistics<Stat>::covariance() const {
        Real sampleWeight = weightSum();
        QL_REQUIRE(sampleWeight > 0.0,
                   "sampleWeight=0, unsufficient");

        Real sampleNumber = static_cast<Real>(samples());
        QL_REQUIRE(sampleNumber > 1.0,
                   "sample number <=1, unsufficient");

        std::vector<Real> m = mean();
        Real inv = 1.0/sampleWeight;

        Matrix result = inv*quadraticSum_;
        result -= outerProduct(m.begin(), m.end(),
                               m.begin(), m.end());

        result *= (sampleNumber/(sampleNumber-1.0));
        return result;
    }


    template <class Stat>
    Disposable<Matrix> GenericSequenceStatistics<Stat>::correlation() const {
        Matrix correlation = covariance();
        Array variances = correlation.diagonal();
        for (Size i=0; i<dimension_; i++){
            for (Size j=0; j<dimension_; j++){
                if (i==j) {
                    if (variances[i]==0.0) {
                        correlation[i][j] = 1.0;
                    } else {
                        correlation[i][j] *=
                            1.0/std::sqrt(variances[i]*variances[j]);
                    }
                } else {
                    if (variances[i]==0.0 && variances[j]==0) {
                        correlation[i][j] = 1.0;
                    } else if (variances[i]==0.0 || variances[j]==0.0) {
                        correlation[i][j] = 0.0;
                    } else {
                        correlation[i][j] *=
                            1.0/std::sqrt(variances[i]*variances[j]);
                    }
                }
            } // j for
        } // i for

        return correlation;
    }

}


#endif