/usr/include/ql/math/solvers1d/brent.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file brent.hpp
\brief Brent 1-D solver
*/
#ifndef quantlib_solver1d_brent_h
#define quantlib_solver1d_brent_h
#include <ql/math/solver1d.hpp>
namespace QuantLib {
//! %Brent 1-D solver
/*! \test the correctness of the returned values is tested by
checking them against known good results.
\ingroup solvers
*/
class Brent : public Solver1D<Brent> {
public:
template <class F>
Real solveImpl(const F& f,
Real xAccuracy) const {
/* The implementation of the algorithm was inspired by
Press, Teukolsky, Vetterling, and Flannery,
"Numerical Recipes in C", 2nd edition, Cambridge
University Press
*/
Real min1, min2;
Real froot, p, q, r, s, xAcc1, xMid;
// we want to start with root_ (which equals the guess) on
// one side of the bracket and both xMin_ and xMax_ on the
// other.
froot = f(root_);
++evaluationNumber_;
if (froot * fxMin_ < 0) {
xMax_ = xMin_;
fxMax_ = fxMin_;
} else {
xMin_ = xMax_;
fxMin_ = fxMax_;
}
Real d = root_- xMax_;
Real e = d;
while (evaluationNumber_<=maxEvaluations_) {
if ((froot > 0.0 && fxMax_ > 0.0) ||
(froot < 0.0 && fxMax_ < 0.0)) {
// Rename xMin_, root_, xMax_ and adjust bounds
xMax_=xMin_;
fxMax_=fxMin_;
e=d=root_-xMin_;
}
if (std::fabs(fxMax_) < std::fabs(froot)) {
xMin_=root_;
root_=xMax_;
xMax_=xMin_;
fxMin_=froot;
froot=fxMax_;
fxMax_=fxMin_;
}
// Convergence check
xAcc1=2.0*QL_EPSILON*std::fabs(root_)+0.5*xAccuracy;
xMid=(xMax_-root_)/2.0;
if (std::fabs(xMid) <= xAcc1 || (close(froot, 0.0))) {
f(root_);
++evaluationNumber_;
return root_;
}
if (std::fabs(e) >= xAcc1 &&
std::fabs(fxMin_) > std::fabs(froot)) {
// Attempt inverse quadratic interpolation
s=froot/fxMin_;
if (close(xMin_,xMax_)) {
p=2.0*xMid*s;
q=1.0-s;
} else {
q=fxMin_/fxMax_;
r=froot/fxMax_;
p=s*(2.0*xMid*q*(q-r)-(root_-xMin_)*(r-1.0));
q=(q-1.0)*(r-1.0)*(s-1.0);
}
if (p > 0.0) q = -q; // Check whether in bounds
p=std::fabs(p);
min1=3.0*xMid*q-std::fabs(xAcc1*q);
min2=std::fabs(e*q);
if (2.0*p < (min1 < min2 ? min1 : min2)) {
e=d; // Accept interpolation
d=p/q;
} else {
d=xMid; // Interpolation failed, use bisection
e=d;
}
} else {
// Bounds decreasing too slowly, use bisection
d=xMid;
e=d;
}
xMin_=root_;
fxMin_=froot;
if (std::fabs(d) > xAcc1)
root_ += d;
else
root_ += sign(xAcc1,xMid);
froot=f(root_);
++evaluationNumber_;
}
QL_FAIL("maximum number of function evaluations ("
<< maxEvaluations_ << ") exceeded");
}
private:
Real sign(Real a, Real b) const {
return b >= 0.0 ? std::fabs(a) : -std::fabs(a);
}
};
}
#endif
|