This file is indexed.

/usr/include/ql/math/solvers1d/brent.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file brent.hpp
    \brief Brent 1-D solver
*/

#ifndef quantlib_solver1d_brent_h
#define quantlib_solver1d_brent_h

#include <ql/math/solver1d.hpp>

namespace QuantLib {

    //! %Brent 1-D solver
    /*! \test the correctness of the returned values is tested by
              checking them against known good results.

        \ingroup solvers
    */
    class Brent : public Solver1D<Brent> {
      public:
        template <class F>
        Real solveImpl(const F& f,
                       Real xAccuracy) const {

            /* The implementation of the algorithm was inspired by
               Press, Teukolsky, Vetterling, and Flannery,
               "Numerical Recipes in C", 2nd edition, Cambridge
               University Press
            */

            Real min1, min2;
            Real froot, p, q, r, s, xAcc1, xMid;

            // we want to start with root_ (which equals the guess) on
            // one side of the bracket and both xMin_ and xMax_ on the
            // other.
            froot = f(root_);
            ++evaluationNumber_;
            if (froot * fxMin_ < 0) {
                xMax_ = xMin_;
                fxMax_ = fxMin_;
            } else {
                xMin_ = xMax_;
                fxMin_ = fxMax_;
            }
            Real d = root_- xMax_;
            Real e = d;

            while (evaluationNumber_<=maxEvaluations_) {
                if ((froot > 0.0 && fxMax_ > 0.0) ||
                    (froot < 0.0 && fxMax_ < 0.0)) {

                    // Rename xMin_, root_, xMax_ and adjust bounds
                    xMax_=xMin_;
                    fxMax_=fxMin_;
                    e=d=root_-xMin_;
                }
                if (std::fabs(fxMax_) < std::fabs(froot)) {
                    xMin_=root_;
                    root_=xMax_;
                    xMax_=xMin_;
                    fxMin_=froot;
                    froot=fxMax_;
                    fxMax_=fxMin_;
                }
                // Convergence check
                xAcc1=2.0*QL_EPSILON*std::fabs(root_)+0.5*xAccuracy;
                xMid=(xMax_-root_)/2.0;
                if (std::fabs(xMid) <= xAcc1 || (close(froot, 0.0))) {
                    f(root_);
                    ++evaluationNumber_;
                    return root_;
                }
                if (std::fabs(e) >= xAcc1 &&
                    std::fabs(fxMin_) > std::fabs(froot)) {

                    // Attempt inverse quadratic interpolation
                    s=froot/fxMin_;
                    if (close(xMin_,xMax_)) {
                        p=2.0*xMid*s;
                        q=1.0-s;
                    } else {
                        q=fxMin_/fxMax_;
                        r=froot/fxMax_;
                        p=s*(2.0*xMid*q*(q-r)-(root_-xMin_)*(r-1.0));
                        q=(q-1.0)*(r-1.0)*(s-1.0);
                    }
                    if (p > 0.0) q = -q;  // Check whether in bounds
                    p=std::fabs(p);
                    min1=3.0*xMid*q-std::fabs(xAcc1*q);
                    min2=std::fabs(e*q);
                    if (2.0*p < (min1 < min2 ? min1 : min2)) {
                        e=d;                // Accept interpolation
                        d=p/q;
                    } else {
                        d=xMid;  // Interpolation failed, use bisection
                        e=d;
                    }
                } else {
                    // Bounds decreasing too slowly, use bisection
                    d=xMid;
                    e=d;
                }
                xMin_=root_;
                fxMin_=froot;
                if (std::fabs(d) > xAcc1)
                    root_ += d;
                else
                    root_ += sign(xAcc1,xMid);
                froot=f(root_);
                ++evaluationNumber_;
            }
            QL_FAIL("maximum number of function evaluations ("
                    << maxEvaluations_ << ") exceeded");
        }
      private:
        Real sign(Real a, Real b) const {
            return b >= 0.0 ? std::fabs(a) : -std::fabs(a);
        }
    };

}

#endif