/usr/include/ql/math/solver1d.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file solver1d.hpp
\brief Abstract 1-D solver class
*/
#ifndef quantlib_solver1d_hpp
#define quantlib_solver1d_hpp
#include <ql/math/comparison.hpp>
#include <ql/utilities/null.hpp>
#include <ql/patterns/curiouslyrecurring.hpp>
#include <ql/errors.hpp>
#include <iomanip>
namespace QuantLib {
#define MAX_FUNCTION_EVALUATIONS 100
//! Base class for 1-D solvers
/*! The implementation of this class uses the so-called
"Barton-Nackman trick", also known as "the curiously recurring
template pattern". Concrete solvers will be declared as:
\code
class Foo : public Solver1D<Foo> {
public:
...
template <class F>
Real solveImpl(const F& f, Real accuracy) const {
...
}
};
\endcode
Before calling <tt>solveImpl</tt>, the base class will set its
protected data members so that:
- <tt>xMin_</tt> and <tt>xMax_</tt> form a valid bracket;
- <tt>fxMin_</tt> and <tt>fxMax_</tt> contain the values of
the function in <tt>xMin_</tt> and <tt>xMax_</tt>;
- <tt>root_</tt> is a valid initial guess.
The implementation of <tt>solveImpl</tt> can safely assume all
of the above.
\todo
- clean up the interface so that it is clear whether the
accuracy is specified for \f$ x \f$ or \f$ f(x) \f$.
- add target value (now the target value is 0.0)
*/
template <class Impl>
class Solver1D : public CuriouslyRecurringTemplate<Impl> {
public:
Solver1D()
: maxEvaluations_(MAX_FUNCTION_EVALUATIONS),
lowerBoundEnforced_(false), upperBoundEnforced_(false) {}
//! \name Modifiers
//@{
/*! This method returns the zero of the function \f$ f \f$,
determined with the given accuracy \f$ \epsilon \f$;
depending on the particular solver, this might mean that
the returned \f$ x \f$ is such that \f$ |f(x)| < \epsilon
\f$, or that \f$ |x-\xi| < \epsilon \f$ where \f$ \xi \f$
is the real zero.
This method contains a bracketing routine to which an
initial guess must be supplied as well as a step used to
scan the range of the possible bracketing values.
*/
template <class F>
Real solve(const F& f,
Real accuracy,
Real guess,
Real step) const {
QL_REQUIRE(accuracy>0.0,
"accuracy (" << accuracy << ") must be positive");
// check whether we really want to use epsilon
accuracy = std::max(accuracy, QL_EPSILON);
const Real growthFactor = 1.6;
Integer flipflop = -1;
root_ = guess;
fxMax_ = f(root_);
// monotonically crescent bias, as in optionValue(volatility)
if (close(fxMax_,0.0))
return root_;
else if (fxMax_ > 0.0) {
xMin_ = enforceBounds_(root_ - step);
fxMin_ = f(xMin_);
xMax_ = root_;
} else {
xMin_ = root_;
fxMin_ = fxMax_;
xMax_ = enforceBounds_(root_+step);
fxMax_ = f(xMax_);
}
evaluationNumber_ = 2;
while (evaluationNumber_ <= maxEvaluations_) {
if (fxMin_*fxMax_ <= 0.0) {
if (close(fxMin_, 0.0))
return xMin_;
if (close(fxMax_, 0.0))
return xMax_;
root_ = (xMax_+xMin_)/2.0;
return this->impl().solveImpl(f, accuracy);
}
if (std::fabs(fxMin_) < std::fabs(fxMax_)) {
xMin_ = enforceBounds_(xMin_+growthFactor*(xMin_ - xMax_));
fxMin_= f(xMin_);
} else if (std::fabs(fxMin_) > std::fabs(fxMax_)) {
xMax_ = enforceBounds_(xMax_+growthFactor*(xMax_ - xMin_));
fxMax_= f(xMax_);
} else if (flipflop == -1) {
xMin_ = enforceBounds_(xMin_+growthFactor*(xMin_ - xMax_));
fxMin_= f(xMin_);
evaluationNumber_++;
flipflop = 1;
} else if (flipflop == 1) {
xMax_ = enforceBounds_(xMax_+growthFactor*(xMax_ - xMin_));
fxMax_= f(xMax_);
flipflop = -1;
}
evaluationNumber_++;
}
QL_FAIL("unable to bracket root in " << maxEvaluations_
<< " function evaluations (last bracket attempt: "
<< "f[" << xMin_ << "," << xMax_ << "] "
<< "-> [" << fxMin_ << "," << fxMax_ << "])");
}
/*! This method returns the zero of the function \f$ f \f$,
determined with the given accuracy \f$ \epsilon \f$;
depending on the particular solver, this might mean that
the returned \f$ x \f$ is such that \f$ |f(x)| < \epsilon
\f$, or that \f$ |x-\xi| < \epsilon \f$ where \f$ \xi \f$
is the real zero.
An initial guess must be supplied, as well as two values
\f$ x_\mathrm{min} \f$ and \f$ x_\mathrm{max} \f$ which
must bracket the zero (i.e., either \f$ f(x_\mathrm{min})
\leq 0 \leq f(x_\mathrm{max}) \f$, or \f$
f(x_\mathrm{max}) \leq 0 \leq f(x_\mathrm{min}) \f$ must
be true).
*/
template <class F>
Real solve(const F& f,
Real accuracy,
Real guess,
Real xMin,
Real xMax) const {
QL_REQUIRE(accuracy>0.0,
"accuracy (" << accuracy << ") must be positive");
// check whether we really want to use epsilon
accuracy = std::max(accuracy, QL_EPSILON);
xMin_ = xMin;
xMax_ = xMax;
QL_REQUIRE(xMin_ < xMax_,
"invalid range: xMin_ (" << xMin_
<< ") >= xMax_ (" << xMax_ << ")");
QL_REQUIRE(!lowerBoundEnforced_ || xMin_ >= lowerBound_,
"xMin_ (" << xMin_
<< ") < enforced low bound (" << lowerBound_ << ")");
QL_REQUIRE(!upperBoundEnforced_ || xMax_ <= upperBound_,
"xMax_ (" << xMax_
<< ") > enforced hi bound (" << upperBound_ << ")");
fxMin_ = f(xMin_);
if (close(fxMin_, 0.0))
return xMin_;
fxMax_ = f(xMax_);
if (close(fxMax_, 0.0))
return xMax_;
evaluationNumber_ = 2;
QL_REQUIRE(fxMin_*fxMax_ < 0.0,
"root not bracketed: f["
<< xMin_ << "," << xMax_ << "] -> ["
<< std::scientific
<< fxMin_ << "," << fxMax_ << "]");
QL_REQUIRE(guess > xMin_,
"guess (" << guess << ") < xMin_ (" << xMin_ << ")");
QL_REQUIRE(guess < xMax_,
"guess (" << guess << ") > xMax_ (" << xMax_ << ")");
root_ = guess;
return this->impl().solveImpl(f, accuracy);
}
/*! This method sets the maximum number of function
evaluations for the bracketing routine. An error is thrown
if a bracket is not found after this number of
evaluations.
*/
void setMaxEvaluations(Size evaluations);
//! sets the lower bound for the function domain
void setLowerBound(Real lowerBound);
//! sets the upper bound for the function domain
void setUpperBound(Real upperBound);
//@}
protected:
mutable Real root_, xMin_, xMax_, fxMin_, fxMax_;
Size maxEvaluations_;
mutable Size evaluationNumber_;
private:
Real enforceBounds_(Real x) const;
Real lowerBound_, upperBound_;
bool lowerBoundEnforced_, upperBoundEnforced_;
};
// inline definitions
template <class T>
inline void Solver1D<T>::setMaxEvaluations(Size evaluations) {
maxEvaluations_ = evaluations;
}
template <class T>
inline void Solver1D<T>::setLowerBound(Real lowerBound) {
lowerBound_ = lowerBound;
lowerBoundEnforced_ = true;
}
template <class T>
inline void Solver1D<T>::setUpperBound(Real upperBound) {
upperBound_ = upperBound;
upperBoundEnforced_ = true;
}
template <class T>
inline Real Solver1D<T>::enforceBounds_(Real x) const {
if (lowerBoundEnforced_ && x < lowerBound_)
return lowerBound_;
if (upperBoundEnforced_ && x > upperBound_)
return upperBound_;
return x;
}
}
#endif
|