/usr/include/ql/math/randomnumbers/primitivepolynomials.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* this file is a slightly edited version of
* PrimitivePolynomialsModuloTwoUpToDegree27.h
* © 2002 "Monte Carlo Methods in Finance"
* as provided ready for compilation in the directory
* "PrimitivePolynomialsModuloTwo" on the CD accompanying the book
* "Monte Carlo Methods in Finance" by Peter Jäckel.
*
* ===========================================================================
* NOTE: The following copyright notice applies to the original code,
*
* Copyright (C) 2002 Peter Jäckel "Monte Carlo Methods in Finance".
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software is freely
* granted, provided that this notice is preserved.
* ===========================================================================
*/
#ifndef primitivepolynomials_hpp
#define primitivepolynomials_hpp
/* This file is provided for the use with Sobol' sequences of higher
* dimensions. The dimensionality of the Sobol' sequence can be extended to
* virtually any size you ever might need by the aid of the table of
* primitive polynomials modulo two.
* It is up to you to define a macro PPMT_MAX_DIM to a positive integer
* less than or equal to 8129334. If you don't define it, it will be set
* below to N_PRIMITIVES_UP_TO_DEGREE_18 which is 21200. That's how many
* primitive polynomials are provided by the standard primitivepolynomial.c
* distributed with QuantLib and that will be compiled into a static array.
* Should you need more, get the original version of primitivepolynomial.c
* as provided ready for compilation in the directory
* "PrimitivePolynomialsModuloTwo" on the CD accompanying the book
* "Monte Carlo Methods in Finance" by Peter Jäckel.
* The file provides polynomials up to degree 27
* for a grand total of 8129334 dimensions.
* Since 8129334 longs compile into an object file of at least 32517336 byte
* size (in fact, gcc -c -O0 PrimitivePolynomialsModuloTwoUpToDegree27.c
* produced a file PrimitivePolynomialsModuloTwoUpToDegree27.o with 32519920
* bytes), it is recommended to only compile as many as you may ever need.
* Worse even than the output file size is the virtual memory requirement
* for the compilation. For Visual C++ 6 you will need to use the /Zm compiler
* option to set the compiler's memory allocation limit (/Zm1500 should work)
* So really only take the maximum of what you think you might ever need.
* After all, you can always recompile with more, should you need it.
*/
/* PPMT : Primitive Polynomials Modulo Two
*
*
* The encoding is as follows:
*
* The coefficients of each primitive polynomial are the bits of the given
* integer. The leading and trailing coefficients, which are 1 for all of the
* polynomials, have been omitted.
*
* Example: The polynomial
*
* 4 2
* x + x + 1
*
* is encoded as 2 in the array of polynomials of degree 4 because the
* binary sequence of coefficients
*
* 10101
*
* becomes
*
* 0101
*
* after stripping off the top bit, and this is converted to
*
* 010
*
* by right-shifting and losing the rightmost bit. Similarly, we have
*
* 5 4 2
* x + x + x + x + 1
*
* encoded as 13 [ (1)1101(1) ] in the array for degree 5.
*/
/* Example: replace primitivepolynomials.cpp provided by QuantLib standard
* distribution with the 8129334 polinomials version and
* comment out the line below if you want absolutely all of the
* provided primitive polynomials modulo two.
*
* #define PPMT_MAX_DIM 8129334
*
* Note that PPMT_MAX_DIM will be redefined to be the nearest equal or larger
* number of polynomials up to one of the predefined macros
* N_PRIMITIVES_UP_TO_DEGREE_XX
* below.
*/
#define N_PRIMITIVES_UP_TO_DEGREE_01 1
#define N_PRIMITIVES_UP_TO_DEGREE_02 2
#define N_PRIMITIVES_UP_TO_DEGREE_03 4
#define N_PRIMITIVES_UP_TO_DEGREE_04 6
#define N_PRIMITIVES_UP_TO_DEGREE_05 12
#define N_PRIMITIVES_UP_TO_DEGREE_06 18
#define N_PRIMITIVES_UP_TO_DEGREE_07 36
#define N_PRIMITIVES_UP_TO_DEGREE_08 52
#define N_PRIMITIVES_UP_TO_DEGREE_09 100
#define N_PRIMITIVES_UP_TO_DEGREE_10 160
#define N_PRIMITIVES_UP_TO_DEGREE_11 336
#define N_PRIMITIVES_UP_TO_DEGREE_12 480
#define N_PRIMITIVES_UP_TO_DEGREE_13 1110
#define N_PRIMITIVES_UP_TO_DEGREE_14 1866
#define N_PRIMITIVES_UP_TO_DEGREE_15 3666
#define N_PRIMITIVES_UP_TO_DEGREE_16 5714
#define N_PRIMITIVES_UP_TO_DEGREE_17 13424
#define N_PRIMITIVES_UP_TO_DEGREE_18 21200
#define N_PRIMITIVES_UP_TO_DEGREE_19 48794
#define N_PRIMITIVES_UP_TO_DEGREE_20 72794
#define N_PRIMITIVES_UP_TO_DEGREE_21 157466
#define N_PRIMITIVES_UP_TO_DEGREE_22 277498
#define N_PRIMITIVES_UP_TO_DEGREE_23 634458
#define N_PRIMITIVES_UP_TO_DEGREE_24 910938
#define N_PRIMITIVES_UP_TO_DEGREE_25 2206938
#define N_PRIMITIVES_UP_TO_DEGREE_26 3926838
#define N_PRIMITIVES_UP_TO_DEGREE_27 8129334
#define N_PRIMITIVES N_PRIMITIVES_UP_TO_DEGREE_27
#ifndef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_18
#endif
#if PPMT_MAX_DIM > N_PRIMITIVES
# error PPMT_MAX_DIM cannot be greater than N_PRIMITIVES
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_01
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_01
# define N_MAX_DEGREE 01
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_02
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_02
# define N_MAX_DEGREE 02
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_03
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_03
# define N_MAX_DEGREE 03
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_04
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_04
# define N_MAX_DEGREE 04
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_05
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_05
# define N_MAX_DEGREE 05
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_06
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_06
# define N_MAX_DEGREE 06
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_07
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_07
# define N_MAX_DEGREE 07
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_08
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_08
# define N_MAX_DEGREE 08
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_09
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_09
# define N_MAX_DEGREE 09
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_10
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_10
# define N_MAX_DEGREE 10
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_11
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_11
# define N_MAX_DEGREE 11
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_12
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_12
# define N_MAX_DEGREE 12
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_13
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_13
# define N_MAX_DEGREE 13
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_14
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_14
# define N_MAX_DEGREE 14
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_15
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_15
# define N_MAX_DEGREE 15
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_16
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_16
# define N_MAX_DEGREE 16
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_17
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_17
# define N_MAX_DEGREE 17
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_18
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_18
# define N_MAX_DEGREE 18
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_19
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_19
# define N_MAX_DEGREE 19
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_20
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_20
# define N_MAX_DEGREE 20
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_21
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_21
# define N_MAX_DEGREE 21
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_22
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_22
# define N_MAX_DEGREE 22
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_23
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_23
# define N_MAX_DEGREE 23
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_24
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_24
# define N_MAX_DEGREE 24
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_25
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_25
# define N_MAX_DEGREE 25
#elif PPMT_MAX_DIM <= N_PRIMITIVES_UP_TO_DEGREE_26
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_26
# define N_MAX_DEGREE 26
#else
# undef PPMT_MAX_DIM
# define PPMT_MAX_DIM N_PRIMITIVES_UP_TO_DEGREE_27
# define N_MAX_DEGREE 27
#endif
/* Microsoft Visual C++ 6.0 */
#if defined(_MSC_VER)
/* disable useless warning C4049
compiler limit : terminating line number emission
No line number support is available for file with more
than 64K source lines. */
#pragma warning(disable: 4049)
#endif
extern
#ifdef __cplusplus
"C"
#endif
/*! You can access the following array as in PrimitivePolynomials[i][j]
with i and j counting from 0 in C convention. PrimitivePolynomials[i][j]
will get you the j-th (counting from zero) primitive polynomial of degree
i+1. Each one-dimensional array of primitive polynomials of a given
degree is terminated with an entry of -1. Accessing beyond this entry
will result in a memory violation and must be avoided. */
const long *const PrimitivePolynomials[N_MAX_DEGREE];
#endif
|