This file is indexed.

/usr/include/ql/math/polynomialmathfunction.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2015 Ferdinando Ametrano
 Copyright (C) 2015 Paolo Mazzocchi

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_polynomial_math_function_hpp
#define quantlib_polynomial_math_function_hpp

#include <ql/math/matrix.hpp>

#include <vector>

namespace QuantLib {
    
    //! %Cubic functional form
    /*! \f[ f(t) = \sum_{i=0}^n{c_i t^i} \f] */
    class PolynomialFunction : public std::unary_function<Time, Real> {

      public:
        PolynomialFunction(const std::vector<Real>& coeff);

        //! function value at time t: \f[ f(t) = \sum_{i=0}^n{c_i t^i} \f]
        Real operator()(Time t) const;

        /*! first derivative of the function at time t
            \f[ f'(t) = \sum_{i=0}^{n-1}{(i+1) c_{i+1} t^i} \f] */
        Real derivative(Time t) const;

        /*! indefinite integral of the function at time t
            \f[ \int f(t)dt = \sum_{i=0}^n{c_i t^{i+1} / (i+1)} + K \f] */
        Real primitive(Time t) const;

        /*! definite integral of the function between t1 and t2
            \f[ \int_{t1}^{t2} f(t)dt \f] */
        Real definiteIntegral(Time t1,
                              Time t2) const;

        /*! Inspectors */
        Size order() const { return order_; }
        const std::vector<Real>& coefficients() { return c_; }
        const std::vector<Real>& derivativeCoefficients() { return derC_; }
        const std::vector<Real>& primitiveCoefficients() { return prC_; }

        /*! coefficients of a PolynomialFunction defined as definite
            integral on a rolling window of length tau, with tau = t2-t */
        std::vector<Real> definiteIntegralCoefficients(Time t,
                                                       Time t2) const;

        /*! coefficients of a PolynomialFunction defined as definite
            derivative on a rolling window of length tau, with tau = t2-t */
        std::vector<Real> definiteDerivativeCoefficients(Time t,
                                                         Time t2) const;

      private:
        Size order_;
        std::vector<Real> c_, derC_, prC_;
        Real K_;
        mutable Matrix eqs_;
        void initializeEqs_(Time t,
                            Time t2) const;
    };

}

#endif