/usr/include/ql/math/polynomialmathfunction.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Ferdinando Ametrano
Copyright (C) 2015 Paolo Mazzocchi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_polynomial_math_function_hpp
#define quantlib_polynomial_math_function_hpp
#include <ql/math/matrix.hpp>
#include <vector>
namespace QuantLib {
//! %Cubic functional form
/*! \f[ f(t) = \sum_{i=0}^n{c_i t^i} \f] */
class PolynomialFunction : public std::unary_function<Time, Real> {
public:
PolynomialFunction(const std::vector<Real>& coeff);
//! function value at time t: \f[ f(t) = \sum_{i=0}^n{c_i t^i} \f]
Real operator()(Time t) const;
/*! first derivative of the function at time t
\f[ f'(t) = \sum_{i=0}^{n-1}{(i+1) c_{i+1} t^i} \f] */
Real derivative(Time t) const;
/*! indefinite integral of the function at time t
\f[ \int f(t)dt = \sum_{i=0}^n{c_i t^{i+1} / (i+1)} + K \f] */
Real primitive(Time t) const;
/*! definite integral of the function between t1 and t2
\f[ \int_{t1}^{t2} f(t)dt \f] */
Real definiteIntegral(Time t1,
Time t2) const;
/*! Inspectors */
Size order() const { return order_; }
const std::vector<Real>& coefficients() { return c_; }
const std::vector<Real>& derivativeCoefficients() { return derC_; }
const std::vector<Real>& primitiveCoefficients() { return prC_; }
/*! coefficients of a PolynomialFunction defined as definite
integral on a rolling window of length tau, with tau = t2-t */
std::vector<Real> definiteIntegralCoefficients(Time t,
Time t2) const;
/*! coefficients of a PolynomialFunction defined as definite
derivative on a rolling window of length tau, with tau = t2-t */
std::vector<Real> definiteDerivativeCoefficients(Time t,
Time t2) const;
private:
Size order_;
std::vector<Real> c_, derC_, prC_;
Real K_;
mutable Matrix eqs_;
void initializeEqs_(Time t,
Time t2) const;
};
}
#endif
|